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Mathematical Statistics 
Unit I 

DISTRIBUTIONS OF RANDOM VARIABLES 
1.1 Introduction: 
Many kinds of investigations may be characterized in part by the fact that 
repeated experimentation, under essentially the same conditions, is more or less 
standard procedure. For instance, in medical research, interest may center on the 
effect of a drug that is to be administered; or an economist may be concerned with 
the prices of three specified commodities at various time intervals; Or an 
agronomist may wish to study the effect that a chemical fertilizer has on the yield 
of a cereal grain. The only way in which an investigator can elicit information 
about any such phenomenon is to perform the experiment. Each experiment 
terminates with an outcome. But it is characteristic of these experiments that the 
outcome cannot be predicted with certainty prior to the experiment. Suppose that 
we have such an experiment, but the experiment is of such a nature that a 
collection of every possible outcome can be described prior to its performance. If 
this kind of experiment can be repeated under the same conditions, it is called a 
random experiment, and the collection of every possible outcome is called the 
experimental space or the sample space. We denote the sample space by C. 
 
Definition 1.1.1 
An experiment is called a random experiment if all possible outcomes of an 
experiment can be described and determined to the performance of the 
experiment. 
 
Definition 1.1.2 
The collection of all possible outcomes of a random experiment is called sample 
space. It is denoted by C. 
 
Example 1: In the toss of a coin, let the outcome tails be denoted by T and let the 
outcome heads be denoted by H. If we assume that the coin may be repeatedly 
tossed under the same conditions, then the toss of this coin is an example of a 
random experiment in which the outcome is one of the two symbols T or H; that 
is, the sample space is the collection of these two symbols.  
For this example, then C = {H, T}. 
 
Example 2: In the cast of one red die and one white die, let the outcome be the 
ordered pair (number of spots up on the red die, number of spots up on the white 
die). If we assume that these two dice may be repeatedly cast under the same 
conditions, then the cast of this pair of dice is a random experiment. The sample 
space consists of the 36 ordered pairs:  
C = {(1, 1), . . .,(1, 6), (2, 1), . . .,(2, 6), . . .,(6, 6)}. 
 
We generally use small Roman letters for the elements of C such as a, b, or c. 
Often for an experiment, we are interested in the chances of certain subsets of 
elements of the sample space occurring. Subsets of C are often called events and 
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are generally denoted by capital Roman letters such as A, B, or C. If the 
experiment results in an element in an event A, we say the event A has occurred. 
We are interested in the chances that an event occurs. For instance, in Example 
1.1.1 we may be interested in the chances of getting heads; i.e., the chances of the 
event A = {H} occurring. In the second example, we may be interested in the 
occurrence of the sum of the up faces of the dice being “7” or “11;” that is, in the 
occurrence of the event  
A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (5, 6), (6, 5)}. 
Now conceive of our having made N repeated performances of the random 
experiment. 
 
Then we can count the number of times (the frequency) that the event A actually 
occurred throughout the N performances. The ratio f/N is called the relative 
frequency of the event A in these N experiments. A relative frequency is usually 
quite erratic for small values of N, as you can discover by tossing a coin. 
 
But as N increases, experience indicates that we associate with the event A a 
number, say p, that is equal or approximately equal to that number about which 
the relative frequency seems to stabilize. If we do this, then the number p can be 
interpreted as that number which, in future performances of the experiment, the 
relative frequency of the event A will either equal or approximate. Thus, although 
we cannot predict the outcome of a random experiment, we can, for a large value 
of N, predict approximately the relative frequency with which the outcome will be 
in A. The number p associated with the event A is given various names. 
Sometimes it is called the probability that the outcome of the random experiment 
is in A; sometimes it is called the probability of the event A; and sometimes it is 
called the probability measure of A. The context usually suggests an appropriate 
choice of terminology. 
 
Example 3: Let C denote the sample space of Example 1.1.2 and let B be the 
collection of every ordered pair of C for which the sum of the pair is equal to 
seven.  
 
Thus B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.  
 
Suppose that the dice are cast N = 400 times and let f denote the frequency of a 
sum of seven. Suppose that 400 casts result in f = 60.  
 
Then the relative frequency with which the outcome was in B is f(N)= 60/400 = 
0.15. Thus we might associate with B a number p that is close to 0.15, and p 
would be called the probability of the event B. 
 
 
EXERCISES 
1.1. In each of the following random experiments, describe the sample 
space s. Use any experience that you may have had (or use your intuition) to 
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assign a value to the probability p of the event C in each of the following 
instances: 
(a) The toss of an unbiased coin where the event C is tails. 
(b) The cast of an honest die where the event C is a five or a six. 
(c) The draw of a card from an ordinary deck of playing cards where the 
event C occurs if the card is a spade. 
(d) The choice of a number on the interval zero to 1 where the event C 
occurs if the number is less than t. 
(e) The choice of a point from the interior of a square with opposite 
vertices (-1, -1) and (1, 1) where the event C occurs if the sum of the 
coordinates of the point is less than 1-. 
 
1.2. A point is to be chosen in a haphazard fashion from the interior of a 
fixed circle. Assign a probability p that the point will be inside another circle, 
which has a radius of one-half the first circle and which lies entirely within 
the first circle. 
 
1.3. An unbiased coin is to be tossed twice. Assign a probability p2 to 
the event that the first toss will be a head and that the second toss will be a tail. 
 
 
1.2. Algebra of Sets: 
 
The concept of a set or a collection of objects is usually left undefined.However, a 
particular set can be described so that there is no misunderstandingas to what 
collection of objects is under consideration. Forexample, the set of the first 10 
positive integers is sufficiently welldescribed to make clear that the numbers -i 
and 14 are not in the set,while the number 3 is in the set. If an object belongs to a 
set, it is saidto be an element of the set. For example, if A denotes the set of real 

numbers x for which 0 ≤ x ≤1, then 
ଷ

ସ
 is an element of the set A. Thefact that 

ଷ

ସ
is an 

element of the set A is indicated by writing 
ଷ

ସ
ᆛA. 

 
More generally, a ᆛA means that a is an element of the set A. 
The sets that concern us will frequently be sets of numbers. 
 
We say a set C is countable if C is finite or has as many elements as there are 
positive integers.  
For example, the sets C1 = {1, 2, . . . , 100} and C2 = {1, 3, 5, 7, . . .} 
 
Definition 1.2.1: If each element of a set A I is also an element of setA 2 , the set A 
I is called a subset of the set A 2 . This is indicated by writing 1 2A A . 

If 1 2A A  and 2 1A A  then the two sets have the sameelements, and this is 

indicated by writing 1 2A A . 

Example 1. Let Al= {x; 0 ≤x ≤ 1} and A2= {x; -1 ≤x ≤ 2}. Here 
the one-dimensional set Alis seen to be a subset of the one-dimensional set 
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A2 ; that is 1 2A A . Subsequently, when the dimensionality of the set is 

clear, we shall not make specific reference to it. 
 
Example 2. LetAI = {(x,y);O≤ x = y ≤1 and A2= {(x,y);O≤  x ≤ 1, 
o ≤y ≤ 1}. Since the elements of Alare the points on one diagonal of the 
square, then 1 2A A . 

 
Definition 1.2.2: If a set A has no elements, A is called the null set. 
This is indicated by writing A = ∅. 
 
Definition 1.2.3: The set of all elements that belong to at least one 
of the sets A I and A 2 is called the union of A I and A 2. The union of 
Al and A 2is indicated by writing Al U A 2 . The union of several sets 
A 1,A 2 , A3, ... is the set of all elements that belong to at least one of 
the several sets. This union is denoted by A I U A 2 U A3 U . .. or by 
Al U A 2U ... U A kif a finite number k of sets is involved. 
 
Example 3:  Let Al = {x; x= 0, 1, ... , l0}and A 2= {x, x= 8,9, l0, 11, 
or 11 <x ≤ 12}. Then Al U A 2= {x; x = 0, 1, ... , 8, 9, l0, 11, or 11 < 
x ≤12} = {x; x = 0, 1, ... ,8,9, l0, or 11 ≤ x ≤  12}. 
 
Example 4. Let Aland A 2be defined as in Example 1. Then 
AlUA 2= A 2 • 
 
Example 5: Let A 2= ∅. Then A1UA 2= Al for every set A1. 
 
Example 6: For every set A, A u A = A. 
 
Example 7: Let A k= {x; 1/(k + 1) ≤x ≤ I}, k = 1, 2, 3, . . .. Then 
AlUA 2U A3 U ... = {x, 0 <x ≤ 1}. Note that the number zero is not in 
this set, since it is not in one of the sets A1, A 2 , A3,… 
 
Definition 1.2.4: The set of all elements that belong to each of the sets 
A 1 and A 2 is called the intersection of A1 and A 2, The intersection of A 1 
and A 2is indicated by writing A1 ∩A 2 . The intersection of several sets 
A1,A 2 , A3, ... is the set of all elements that belong to each of the sets 
A 1,A 2 , A3, .. " This intersection is denoted by Al∩A2∩ A3 ∩ ... 
or by Al∩A2∩ A3 ∩ ...∩A kif a finite number k of sets is involved. 
 
Example 8: Let A1= {(x, y); (x, y) = (0, 0), (0, 1), (1, 1)} and A2= 
{(x, y); (x, y) = (1,1), (1,2), (2, 1)}. Then A1∩A 2= {(x, y); (x, y) = (1, 1)}. 
 
Definition 1.2.5:The complement of an event A is the set of all elements in C 
which are not in A. We denote the complement of A by Ac. That is, 

 /cA x C x A    
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Two events are disjoint if they have no elements in common. More formally we 
define 
 
Definition 1.2.6:Let A and B be events. Then A and B are disjoint if A∩B = φ 
If A and B are disjoint, then we say A ∪B forms a disjoint union. The next two 
examples illustrate these concepts. 
 
Example 9:Suppose we have a spinner with the numbers 1 through 10 on 
it. The experiment is to spin the spinner and record the number spun. Then 
C = {1, 2, . . . , 10}. Define the events A, B, and C by A = {1, 2}, B = {2, 3, 4}, 
and 
C = {3, 4, 5, 6}, respectively. 
Ac= {3, 4, . . . , 10}; A ∪B = {1, 2, 3, 4}; A ∩ B = {2} 
A ∩ C = φ; B ∩ C = {3, 4}; B ∩ C ⊂B; B ∩ C ⊂C 
A ∪(B ∩ C) = {1, 2} ∪ {3, 4} = {1, 2, 3, 4}  
(A ∪B) ∩ (A ∪C) = {1, 2, 3, 4}∩ {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4}  
The reader should verify these results. 
 
Example 10:For this example, suppose the experiment is to select a real number 
in the open interval (0, 5); hence, the sample space is C = (0, 5). Let A = (1, 3), 
B = (2, 4), and C = [3, 4.5). 
A ∪B = (1, 4); A ∩ B = (2, 3); B ∩ C = [3, 4) 
A ∩ (B ∪C) = (1, 3) ∩ (2, 4.5) = (2, 3) (1.2.3) 
(A ∩ B) ∪(A ∩ C) = (2, 3) ∪φ = (2, 3) (1.2.4) 
A sketch of the real number line between 0 and 5 helps to verify these results. 
 
Distributive Laws: 
For any sets A, B, and C, 
A ∩ (B ∪C) = (A ∩ B) ∪(A ∩ C) 
A ∪(B ∩ C) = (A ∪B) ∩ (A ∪C).  
These follow directly from set theory.  
 
The next two identities are collectively known as DeMorgan’s Laws. For any 
sets A and B, 
(A ∩ B)c= Ac∪Bc 
(A ∪B)c= Ac∩ Bc.  
 
For instance, in Example 9, 
(A∪B)c= {1, 2, 3, 4}c= {5, 6, . . . , 10} = {3, 4, . . . , 10}∩{{1, 5, 6, . . . , 10} = 
Ac∩Bc; 
while, from Example 10, 
(A ∩ B)c= (2, 3)c= (0, 2] ∪[3, 5) = [(0, 1] ∪[3, 5)] ∪[(0, 2] ∪[4, 5)] =Ac∪Bc. 
As the last expression suggests, it is easy to extend unions and intersections to 
morethan two sets. If A1,A2, . . .,An are any sets, we define 
A1∪A2∪ · · · ∪An= {x : x ∈Ai, for some i= 1, 2, . . . , n}  
A1∩ A2∩ · · · ∩ An= {x : x ∈Ai, for all i= 1, 2, . . ., n}.  
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1.3: Set Functions. 
 
We havefunctions that can be evaluated, not necessarily at a point, but for 
anentire set of points. Such functions are naturally called functions of aset or, 
more simply, set functions. We shall give some examples of setfunctions and 
evaluate them for certain simple sets. 
 
Example 1. Let A be a set in one-dimensional space and let Q(A) be 
equal to the number of points in A which correspond to positive integers. 
Then Q(A) is a function of the set A. Thus, if A = {x; 0 <x < 5}, then 
Q(A) = 4; if A = {x; x = -2, -1}, thenQ(A) = O;ifA= {x; 0 <x < 6}, 
then Q(A) = 5. 
 
Example 2. Let A be a set in two-dimensional space and let Q(A) be the 
area of A, if A has a finite area; otherwise, let Q(A) be undefined. Thus, if 
A = {(x, y); x2+ y2 ≤1}, then Q(A) = π; if A = {(x, y); (x, y) = (0,0), 
(1,1), (0, 1)}, then Q(A) = 0;  
 
Example 3. Let A be a set in three-dimensional space and let Q(A) be 
the volume of A, if A has a finite volume; otherwise, let Q(A) be undefined. 
Thus, if A = {(x, y, z); 0 ≤x ≤ 2,0 ≤ y ≤ 1,0 ≤z ≤ 3}, then Q(A) = 6; 
if A = {(x, y, z); x2+ y2+ Z2≥1}, then Q(A) is undefined. 

At this point we introduce the following notations. The symbol (ݔ)݂
  

will mean the ordinary (Riemann) integral of f(x) over a prescribed 

one-dimensional set A; the symbol∬ ,ݔ)݃ ݕ݀ݔ݀(ݕ  
will mean the Riemann integral of g(x, y) over a prescribed twodimensionalset A; 
and so on. To be sure, unless these sets A and thesefunctions f(x) and g(x, y) are 
chosen with care, the integrals willfrequently fail to exist. Similarly, the 
symbol∑ (ݔ)݂ will mean the sum extended over all x ᆛA; the 
symbol∑ ∑ ,ݔ)݃ (ݕ  
will mean the sum extended over all (x, y) ᆛA; and so on. 
 
1.4 Probability set functions: 
 
Definition 1.4.1: Anysubset of a sample space C is called a event. The event S is 
called sure event and the event which is empty is called an impossible event. 
 
Definition 1.4.2: Let S be an event sample space. The set P is called the 
probability set function if it satisfies the following condition. 
(i) P(A) ≥ 0. 
(ii) P(S) = 1 
(iii) P(⋃ ܣ


ୀଵ ) = ∑ (ܣ)ܲ

ୀଵ  
Where {ܣ} is any finite sequence of disjoint events. The number P(A) is called 

the probability of the event a and ܲ(ܣ) = ()

(ௌ)
. 
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Definition1.4.3: Let S be the sample space and ܣ ⊆ ܵ. Then  
(i) ܲ(̅ܣ) = 1 −   .is the complement of A ܣ̅ where (ܣ)ܲ
(ii) ܲ(∅) = 0. 
(iii) ܲ(ܣ ∪ (ܤ = (ܣ)ܲ + (ܤ)ܲ − ܣ)ܲ ∩  .where A and B are events (ܤ
 
Definition1.4.4: Let S be a sample space due to the random experiment. The 
function X : S →R which assign to each element in S one and only real number is 
called the random variable. 
 
Definition1.4.5: Distribution Function. Let X be a random variable. Then the 
function F : R →R defined by F(X) = P( X ≤ x ) where −∞ < ݔ < ∞ is called a 
distribution function of random variable X. 
 
Definition1.4.6:Discrete random variable. If the random variable X takes 
atmost a countable number of values X1, X2, X3, …, Xn then X is called as a 
Discrete random variable. 
 

            1.5 Probability Density Function. 
            Definition 1.5.1: Probability Density Function. Let X be a discrete 
random variable andܲ(ܺ = (ݔ =  =  Then the distribution functions of a .(ݔ)݂
random variable is defined by ܨ(ܺ) = ݔ)ܲ ≤ (ݔ = ∑ ௫ರೣ(ݔ)݂

. Here F is called 
probability density function of the discrete random variable. 
 
Definition1.5.2: Continuous Random Variable. The random variable X is said 
to be continuous random variable if it can take any value in an interval. 
 
Definition1.5.3: Probability Density Function of continuous random variable. 
Let X be a continuous random variable taking the values in the interval (−∞, ∞). 
Let f(x) be a function such that ݂(ݔ) ≥ 0 ; ݔ ∈ (−∞, ∞)  and  ݔ݀(ݔ)݂ = 1.

ஶ
ିஶ  

Then ݂(ݔ) is called a probability density function. 
 
Definition1.5.4:Distribution functions of the continuous random variable. Let 
X be a continuous random variable with p.d.f݂(ݔ). Define (ݔ)ܨ 
 .is called the distribution function of the continuous random variable of X (ݔ)ܨ
 
Theorem 1. For each C∈ ܵ, P(C) = 1 - P(C*). 
Proof. We have S = C ∪C* and C ∩C* = ∅.  

ܲ(ܵ) = (ܥ)ܲ +  (∗ܥ)ܲ
1 = P(C) + P(C*), 
which is the desired result. 
 
Theorem 2. The probability of the null set is zero; that is, P(∅) = O. 
Proof. In Theorem 1, take C = ∅ so that C* =S. Accordingly, wehave 
P(∅) = 1 - P(S) = 1 - 1 = 0, 
and the theorem is proved. 
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Theorem 3. If  C1 and C2 are subsets of' S such that C1⊆C2 , then 
P(C1 ) ≤ P(C2 ) · 
Proof. Now C2 = C1∪(C1* ∩ C2)  and ܥଵ ∩ ଵܥ)

∗ ∩ (ଶܥ = ∅ 
Hence, P(C2 ) = P(C1 ) + ܲ(ܥଵ

∗ ∩  (ଶܥ
However, ܲ(ܥଵ

∗ ∩ ≤ (ଶܥ 0 accordingly, 
P(C2 ) ≥P(C1 ) · 
 
Theorem 4. For each C∈ ܵ 0 ≤ (ܥ)ܲ ≤1. 
 Proof: Since ∅ ⊆ ܥ ⊆ ܵ using theorem 3 
 (ܵ)ܲ  ≥  (ܥ)ܲ  ≥ (∅)ܲ
Hence 0 ≤ ܲ(ܥ) ≤  1 
 
Theorem 5. If  C1 and C2 are subsets of S then 

ଵܥ)ܲ ∪ (ଶܥ = (ଵܥ)ܲ + (ଶܥ)ܲ − ଵܥ)ܲ ∩  (ଶܥ
 
Proof: Each of the sets C1 U C2 and C2 can be represented, respectively, 

as a union of nonintersecting sets as follows: 
C1 U C2 = Cl U (ܥଵ

∗ ∩C2) and ܥଶ = ଵܥ) ∩ (ଶܥ ∪ ଵܥ)
∗ ∩  (ଶܥ

Thus, from (iii) of Definition 1.4.2, 
ଵܥ)ܲ ∪ (ଶܥ = (ଵܥ)ܲ + ଵܥ)ܲ

∗ ∩  (ଶܥ
Andܲ(ܥଶ) = ଵܥ)ܲ ∩ (ଶܥ + ଵܥ)ܲ

∗ ∩  (ଶܥ
If the second of these equations is solved ܲ(ܥଵ

∗ ∩  ଶ) for and thisܥ
result substituted in the first equation, we obtain 

ଵܥ)ܲ ∪ (ଶܥ = (ଵܥ)ܲ + (ଶܥ)ܲ − ଵܥ)ܲ ∩  (ଶܥ
This completes the proof. 
 

Example 1. Let S denote the sample space of Example 2 of Section 1.1.Let the 
probability set function assign a probability of 1-6 to each of the 36points in S.  
If Cl = {C; C = (1, 1), (2, 1), (3, 1), (4, 1), (5,1)} and 
 C2 ={C; C = (1,2), (2, 2), (3, 2)}, then  

P(CI ) = 
ସ

ଷ
, P(C2 ) =

ଷ

ଷ
,P(CIU C2 ) = 



ଷ
and P(CI∩ C2) = 0. 

 
Example 2. Two coins are to be tossed and the outcome is the orderedpair (face 
on the first coin, face on the second coin). Thus the sample spacemay be 
represented as S= {C; C = (H, H), (H, T), (T, H), (T, T)}. Let theprobability set 

function assign a probability of 
ଵ

ସ
 to each element of S. 

Let Cl = {C; C = (H, H), (H, T)} and C2 = {C; C = (H, H), (T, H)}.  

ThenP(Cl) = P(C2 ) =
ଶ

ସ
, P(CI∩ C2 ) =

ଵ

ସ
, and, in accordance with Theorem 5, 

P(CIU C2 ) = 
ଶ

ସ
 + 

ଶ

ସ
–

ଵ

ସ
= 

ଷ

ସ
 

 
Example 3. Let X be a random variable of the discrete type with space 
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A = {x; x = 0, 1,2, 3, 4}. Letܲ(ܣ) = ∑ ௫∈(ݔ)݂  where ݂(ݔ) = ସ!

௫!(ସି௫)!
ቀଵ

ଶ
ቁ

ସ
 where 

ݔ ∈  ܣ
and, as usual, 0! = 1. Then if A = {x; x = 0, 1}, we have 

(ܣ)ܲ =
4!

0! (4)!
൬

1
2

൰
ସ

+
4!

1! (3)!
൬

1
2

൰
ସ

=
1

16
+

4
16

=
5

16
 

 
 

 
Example 4. Let X be a random variable of the discrete type with space  

A= {x; x = 1, 2, 3, ... }, and let f(x) =ቀ
ଵ

ଶ
ቁ

௫
, x∈ ∑ = Then Pr (x∈A)ܣ  (ݔ)݂

If A = {x; x = 1, 3, 5, 7, ...}, we have ܲ(ܣ) = ቀଵ

ଶ
ቁ

ଵ
+ ቀଵ

ଶ
ቁ

ଷ
+ ቀଵ

ଶ
ቁ

ହ
+ ⋯ = ଶ

ଷ
· 

 
(b) The continuous type of random variable. Let the one-dimensionalset be such 
that the Riemann integral  ݔ݀(ݔ)݂ = 1where (1) f(x) > 0, ݔ ∈  and (2) f(x) has ,ܣ
at most a finite number of discontinuities in every finite interval that is a subset of 
A. If Sis the space of the random variable X and if the probability set function 
P(A), A ⊆ Scan be expressed in terms of such an f(x) by  

P(A) = Pr (X∈  = (ܣ ݔ݀(ݔ)݂  = 1, then X is said to be a random variable of the 
continuous type and to have a distribution of that type. 
 
Example 1. Let the space S= {x; 0 <x <∞}, and let f(x) =݁ି௫ , ݔ ∈   ,ܣ
If X is a random variable of the continuous type so that Pr (X ∈A) =݁ି௫݀ݔ, 
we have, with A = {x; 0 <x < I}, 

Pr (X ∈A) =  ݁ି௫݀ݔ = 1 − ݁ିଵ.
ଵ

  
• 
Note that Pr (X ∈A) is the area under the graph of f(x) = e- x , which lies 
above the z-axis and between the vertical lines x = 0 and x = 1. 
 
Example 2. Let X be a random variable of the continuous type with space  
S= {x; 0 <x <1}. Let the probability set function be P(A) =  ,ݔ݀(ݔ)݂
where݂(ݔ) =  .ଶݔܿ
Since P(A) is a probability set function, P(S) = 1. Hence the constant c is 

determined by  ݔଶ݀ݔܿ = 1
ଵ

 . c = 3 
 
It is seen that whether the random variable X is of the discrete type or of the 
continuous type, the probability Pr (X ∈A) is completely determined by a 
functionf(x). In either casef(x) is called the probability density function (hereafter 
abbreviated p.d.f.) of the random variable X. 
If we restrict ourselves to random variables of either the discrete type or the 
continuous type, we may work exclusively with the p.d.f.f(x).  
If f(x) is the p.d.f. of a continuous type of random variable X and if 
A is the set {x; a <x <b}, then P(A) = Pr (X ∈A) can be written as 
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ܲ(ܽ < ݔ < ܾ) = න ݔ݀(ݔ)݂



 

Moreover, if A = {x; x = a}, then P(A) = Pr (X ∈A) can be written as 

ݔ)ܲ = ܽ) = න ݔ݀(ݔ)݂ = 0



 

The probability of every set consisting of a single point is zero. This fact enables 
us to write, say,Pr(a <X <b) = Pr(a≤ X ≤b). 
 

Example 5. Let the random variable X have the p.d.f݂(ݔ) = ቄ20  ݔ < ݔ < 1
݁ݏ݅ݓݎℎ݁ݐ 0

  

 

Find Pr ቀ
ଵ

ଶ
≤ ݔ ≤

ଷ

ସ
ቁ and Pr ቀ−

ଵ

ଶ
≤ ݔ ≤

ଵ

ଶ
ቁ 

Solution: First Pr ቀଵ

ଶ
≤ ݔ ≤ ଷ

ସ
ቁ =  ݔ݀ݔ2 = ቀ2 ௫మ

ଶ
ቁభ

మ

య
ర

య
ర

భ
మ

 

 

                                                  =ቀ
ଷ

ସ
ቁ

ଶ
− ቀ

ଵ

ଶ
ቁ

ଶ
=

ଽ

ଵ
−

ଵ

ସ
=

ଽିସ

ଵ
=

ହ

ଵ
 

Next,Pr ቀ− ଵ

ଶ
≤ ݔ ≤ ଵ

ଶ
ቁ =  ݔ0݀


ି

భ
మ

+  ݔ݀ݔ2
భ
మ

  

                                                             = 0 + ൬
1
2

൰
ଶ

=
1
4

 

 
 

Example 6. Let ݂(ݔ, (ݕ = ൜6ݔଶ0   ݕ ≤ ݔ ≤ 1, 0 ≤ ݕ ≤ 1
݁ݏ݅ݓݎℎ݁ݐ                             0

  

Then,Pr ቀ0 < ݔ < ଷ

ସ
, ଵ

ଷ
< ݕ < 2ቁ =   ,ݔ)݂ ݕ݀ݔ݀(ݕ

ଶ
భ
య

య
ర

  

= න න ݕ݀ݔ݀ݕଶݔ6

య
ర



ଵ

భ
య

+ න න ݕ݀ݔ0݀

య
ర



ଶ

ଵ

 

=
3
8

+ 0 =
3
8

 

 
Note that this probability is the volume under the surface f(x, y) = 6x2yand above 
the rectangular set {(x, y); 0 <x < 3/4, 1/3<y < 1} in the xy-plane. 
 
Exercises 
1.4.1. For each of the following, find the constant c so that f(x) satisfies 
the conditions of being a p.d.f. of one random variable X. 

(a) f(x) = cቀ
ଶ

ଷ
ቁ

௫
x, x = 1, 2, 3, ... , zero elsewhere. 

(b) f(x) = cx݁ି௫, 0 <x < (X), zero elsewhere. 
 
1.4.2. Letf(x) = x/15, x = 1,2,3,4,5, zero elsewhere, be the p.d.f. of X. 
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Find Pr (X = 1 or 2), Pr (1/2< X <5/2), and Pr (1 ≤X ≤ 2). 
 

1.6. The Distribution Function 
Let the random variable X have the probability set function P(A),where A is a one-
dimensional set. Take x to be a real number and considerthe set A which is an 
unbounded set from -∞ to x, including the point x itself. For all such sets A we 
have P(A) = Pr(X ᆛA) =Pr(X ≤ x). This probability depends on the point x; that is, 
this probability is a function of the point x. This point function is denoted by the 
symbol F(x) = Pr(X ≤x). The function F(x) is called the distribution function 
(sometimes, cumulative distribution function) of the random variable X. Since 
F(x) = Pr(X ≤x), then, with f(x)the p.d.f we have  (ݔ)ܨ = ∑ ௪ஸ௫(ݓ)݂  for the 
discrete type of random variable, and (ݔ)ܨ =  ݓ݀(ݓ)݂

௫
ି∞

 for the continuous 
random variable. 
 
Remark. If X is a random variable of the continuous type, the p.d.f.f(x) has at 
most a finite number of discontinuities in every finite interval. This means (1) that 
the distribution function F(x) is everywhere continuous and (2) that the derivative 
of F(x) with respect to x exists and is equal to f(x) at each point of continuity of 
f(x). That is, F'(x) = f(x) at each point of continuity of f(x). If the random variable 
X is of the discrete type, most surely the p.d.f.f(x) is not the derivative of F(x) 
with respect to x (that is, with respect to Lebesgue measure); but f(x) is 
the(Radon-Nikodym) derivative of F(x) with respect to a counting measure. A 
derivative is often called a density. Accordingly, we call these derivatives 
probability density functions. 
 
Example 1. Let the random variable X of the discrete type have the p.d.f   
          f(x) = x/6, x = 1,2,3, zero elsewhere.  
The distribution function of X is 
 

(ݔ)ܨ =

ە
ۖ
۔

ۖ
ۓ

ݔ           0 < 1
1
6

   1 ≤ ݔ < 2

3
6

   2 ≤ ݔ < 3

1            3 ≤ ݔ

  

 
 
 
 
 
       F(x) 
           1 
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                                     1                2                3                                X 
 

Example 2. Let the random variable X of the continuous type have thep.d.f. 
f(x) = 2/x3 , 1 <x <∞), zero elsewhere. The distribution function  F(x) is 
 

(ݔ)ܨ =

ە
ۖ
۔

ۖ
ۓ න ݓ݀ 0

௫

ିஶ

= ݔ    0 < 1

න
2

ଶݓ ݓ݀ = 1 −
1

ଶݔ     1 ≤ .ݔ

௫

ଵ

  

 
           F(x) 
 
              1 
 
 
 
 1 x 
 
The graph of this distribution function is depicted in the above figure. Here F(x)is 
a continuous function for all real numbers x; in particular, F(x) is 
everywherecontinuous to the right. Moreover, the derivative of F(x) with 
respectto x exists at all points except at x = 1. Thus the p.d.f. of X is defined by 
thisderivative except at x = 1. Since the set A = {x; x = 1} is a set of 
probabilitymeasure zero [that is, P(A) = OJ, we are free to define the p.d.f. at x = 
1 inany manner we please. One way to do this is to write f(x) = 2/x3, 1 <x <∞ and 
0 elsewhere. There are several properties of a distribution function F(x) thatcan be 
listed as a consequence of the properties of the probability setfunction. Some of 
these are the following. In listing these properties, weshall not restrict X to be a 
random variable of the discrete or continuoustype. We shall use the symbols F(∞) 
and F( -0) to mean limF(x)and limF(x), respectively. In like manner, the symbols 
{x; x ≤b}and 
{x; x ≤ - ∞} represent, respectively, the limits of the sets{x; x ~ b} ,{x; x ≤ - b} as 
b →∞. 
 
(a) 0 ≤ F(x) ≤ 1 because 0 ≤Pr (X ≤ x) ≤ 1. 
 
(b) F(x) is a nondecreasing function ofx.  
For, if x' <x", then{x; x ≤x"} = {x; x ≤x'} U {x; x' <x ≤x"} 
 
And Pr (X ≤x") = Pr (X ≤x') + Pr(x' < X ≤x"). 
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That is F(x") - F(x') = Pr(x' < X ≤x") ≥ 0.  
 
(c) F(∞) = 1 and F( -∞) = 0 because the set {x; x ≤ ∞} is theentire one-
dimensional space and the set {x; x ≤ - ∞} is the null set. 
 
From the proof of (b), it is observed that, if a <b, then 
Pr(a < X ≤b) = F(b) - F(a). 
 
Suppose that we want to use F(x) to compute the probability Pr (X = b). 
To do this, consider, with h > 0, 

lim
→

ܾ)ݎܲ − ℎ < ܺ ≤ ܾ) = lim
→

[ (ܾ)ܨ − ܾ)ܨ − ℎ)]  

 
Intuitively, it seems that limPr(b - h < X ≤b) should exist and be 
                                      h→0 
equal to Pr (X = b) because, as h tends to zero, the limit of the set 
{x; b - h <x ≤b} is the set that contains the single point x = b. Thefact that this 
limit is Pr (X = b) is a theorem that we accept withoutproof. Accordingly, we 
havePr (X = b) = F(b) - F(b-),where F(b-) is the left limit of F(x) at b. 
That is, the probability that X = b is the height of the step that F(x) has at x = b. 
Hence, if the distribution function F(x) is continuous at x = b, thenPr (X = b) = 0. 
There is a fourth property of F(x) that is now listed. 
 
(d) F(x) is continuous to the right at each point x. 
 
To prove this property, consider, with h > 0, 
 

ܽ)ݎܲ < ܺ ≤ ܽ + ℎ) = ܽ)ܨ] + ℎ) − →[(ܽ)ܨ


→
  

 
We accept without proof a theorem which states, with h > 0, that 

ܽ)ݎܲ < ܺ ≤ ܽ + ℎ) = ܲ(0) = 0→
  

 
Here also, the theorem is intuitively appealing because, as h tends ,  the limit of 
the set  
{x; a <x ≤a + h}is the null set. Accordingly, we write 0 = F(a+) - F(a),where F(a 
+) is the right-hand limit of F(x) at x = a. Hence F(x) is continuous to the right at 
every point x = a. 
 
The preceding discussion may be summarized in the following manner: 
 
A distribution function F(x) is a non decreasing function of x, which is 
everywhere continuous to the right and has F( -0) = 0,F(∞) = 1. The probability 
Pr(a < X ≤b) is equal to the difference F(b) - F(a). If x is a discontinuity point of 
F(x), then the probability Pr (X = x) is equal to the jump which the distribution 
function has at the point x. If x is a continuity point of F(x), then  
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Pr (X = x) = 0.Let X be a random variable of the continuous type that has p.d.f  
f(x) , and let A be a set of probability measure zero; that is, P(A) =Pr (X E A) = O. 
It has been observed that we may change the definition of j(x) at any point in A 
without in any way altering the distribution 
of probability. The freedom to do this with the p.d.f j(x), of a continuous type of 
random variable does not extend to the   F(x); for, if F(x) is changed at so much 
as one point x, the probability Pr (X ~ x) = F(x) is changed, and we have a 
different distribution of probability. That is, the distribution function F(x), not the 
p.d.f  f (x), is really the fundamental concept. 
 
 
Example 3. Let a distribution function be given by 
 

F(x) = ቐ
ݔ   0 < 0

௫ାଵ

ଶ
   0 ≤ ݔ < 1

1                1 ≤ ݔ

  

Then, for instance, 

Pr (-3 < X ≤
ଵ

ଶ
) = F(

ଵ

ଶ
) - F( -3) = 3/4 - 0 = 3/4 

And Pr(X = 0) = F(0) - F(0-) = 1/2 - 0 = l/2 
 
We see that F(x) is not always continuous, nor is a step function. Accordingly, the 
corresponding distribution is neither of the continuous type nor of the discrete 
type. It may be described as a mixture of those types. We shall now point out an 
important fact about a function of a random variable. Let X denote a random 
variable with space d. Consider the function Y = u(X) of the random variable X. 
Since X is a function defined on a sample space S, then Y = u(X) is a composite 
function defined on S. That is, Y = u(X) is itself a random variable which, has its 
own space ܤ = ;ݕ} ݕ = ,(ݔ)ݑ {݀ ߳ ݔ and its own probability set function. If 
 ݀  ܣ ߳ ܺ the event Y = u(X) ≤y occurs when, and only when, the eventܤ ߳ ݕ
occurs, where ܣ = ;ݔ} (ݔ)ݑ ≤  That is, the distribution function of Y is.{ݕ
 

(ݕ)ܩ = Pr(ܻ ≤ (ݕ = Pr[ݑ(ܺ) ≤ [ݕ =  (ܣ)ܲ
 
The following example illustrates a method of finding the distribution function 
and the p.d.f. of a function of a random variable. 
 

Example 4. Let (ݔ)݂ =
ଵ

ଶ
, −1 < ݔ < 1 , zero elsewhere, be the p.d.f. of the 

random variable X. Define the random variable Y by Y = X2. We wish to find the 
p.d.f. of Y. If ݕ ≥ 0, the probability Pr(ܻ ≤  is equivalent to (ݕ
 

Pr(ܺଶ ≤ (ݕ = Pr൫−ඥݕ ≤ ܺ ≤ ඥݕ൯. 
 
Accordingly, the distribution function of Y, (ݕ)ܩ = Pr(ܻ ≤  is given by ,(ݕ
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(ݕ)ܩ =

ە
ۖ
۔

ۖ
ۓ ݕ                               ,0 < 0,

න
1
2

ݔ݀ = ඥ0             ,ݕ ≤ ݕ < 1,
√௬

ି√௬

1,                               1 ≤ .ݕ

  

 
Since Y is a random variable of the continuous type, the p.d.f. of Y is g(y) = G'(y) 
at all points of continuity of g(y). Thus we may write 
 

(ݕ)݃ = ቐ
1

2ඥݕ
,                     0 < ݕ < 1,

.݁ݎℎ݁ݓ݁ݏ݈݁                        0

  

 
Let the random variables X and Y have the probability set function P(A), where A 
is a two-dimensional set. If A is the unbounded set {(ݑ, ;(ݒ ݑ ≤ ,ݔ ݒ ≤  where ,{ݕ
X and y are real numbers, we have 
 
(ܣ)ܲ                                   = Pr[(ܺ, [ܣ߳ (ܻ = Pr(ܺ ≤ ,ݔ ܻ ≤  .(ݕ
 
This function of the point (x, y) is called the distribution function of X 
and Y and is denoted by 
 

,ݔ)ܨ (ݕ = Pr(ܺ ≤ ,ݔ ܻ ≤  .(ݕ
 
If X and Yare random variables of the continuous type that havep.d.f.݂(ݔ,  then ,(ݕ
 

,ݔ)ܨ (ݕ = න න ,ݑ)݂ .ݒ݀ ݑ݀ (ݒ
௫

ିஶ

௬

ିஶ
 

 
Accordingly, at points of continuity of ݂(ݔ,  we have ,(ݕ
 

߲ଶݔ)ܨ, (ݕ

ݕ߲ ݔ߲
= ,ݔ)݂  .(ݕ

 
It is left as an exercise to show, in every case, that  
 

Pr(ܽ < ܺ ≤ ܾ, ܿ < ܻ ≤ ݀) = ,ܾ)ܨ ݀) − ,ܾ)ܨ ܿ) − ,ܽ)ܨ ݀) + ,ܽ)ܨ ܿ). 
for all real constants ܽ < ܾ, ܿ < ݀. 
 
The distribution function of the n random variables X1,X2,….,Xnis the point 
function 
 

,ଵݔ)ܨ ,ଶݔ … , (ݔ = Pr(ܺଵ ≤ ,ଵݔ  ܺଶ ≤ ,ଶݔ … , ܺ ≤  (ݔ
 
An illustrative example follows. 
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Example 5. Let ݂(ݔ, ,ݕ (ݖ = ݁ି(௫ା௬ା௭), 0 < ,ݔ ,ݕ ݖ < ∞, zero elsewhere,be the 
p.d.f. of the random variables X, Y, and Z. Then the distribution function of X, Y, 
and Z is given by 
 

,ݔ)ܨ ,ݕ (ݖ =

ە
ۖ
۔

ۖ
ۓ Pr(ܺ ≤ ,ݔ ܻ ≤ ,ݕ ܼ ≤ (ݖ

න න න ݁ି௨ି௩ି௪
௫


ݓ݀ ݒ݀ ݑ݀

௬



௭


(1 − ݁ି௫)(1 − ݁ି௬)(1 − ݁ି௭),           0 ≤ ,ݔ ,ݕ ݖ < ∞

  

 
and is equal to zero elsewhere. Incidentally, except for a set of probability 
measure zero, we have 

߲ଷݔ)ܨ, ,ݕ (ݖ

ݖ߲ ݕ߲ ݔ߲
= ,ݔ)݂ ,ݕ  .(ݖ

 
 
 Certain Probability Models 
 
The probability model described in the following: 
 
Example 1. Let a card be drawn at random from an ordinary deck of 52 playing 
cards. The sample space S is the union of k = 52 outcomes, and it is reasonable to 

assume that each of these outcomes has the same probability 
ଵ

ହଶ
 .Accordingly, if 

E1 is the set of outcomes that are spades, ܲ(ܧଵ) = ଵଷ

ହଶ
= ଵ

ସ
 because there are r1= 13 

spades in the deck; that is, 
ଵ

ସ
 is the probability of drawing a card that is a spade. If 

E2is the set of outcomes that are kings, ܲ(ܧଶ) = ସ

ହଶ
= ଵ

ଵଷ
 because there are r2= 4 

kings in the deck; that is, 
ଵ

ଵଷ
 is the probability of drawing a card that is a king. 

These computations are very easy because there are no difficulties in the 
determination of the appropriate values of r and k. However, instead of drawing 
only one card, suppose that five cards are taken, at random and without 
replacement, from this deck. We can think of each five-card hand as being an 
outcome in a sample space. It is reasonable to assume that each of these outcomes 
has the same probability. Now if E1 is the set of outcomes in which each card of 
the hand is a spade, P(E1) is equal to the number r1of all spade hands divided by 
the total number, say k, of five-card hands. It is shown in many books on algebra 
that 
 

ଵݎ = ൬
13
5

൰ =
13!

5! 8!
             ܽ݊݀   ݇ = ൬

52
5

൰ =
52!

5! 47!
 

 
In general, if n is a positive integer and if x is a nonnegative integer withݔ ≤
݊, then the binomial coefficient 
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ቀ
݊
ݔ

ቁ =
݊!

!ݔ (݊ − !(ݔ
 

is equal to the number of combinations of n things taken x at a time. Thus, here, 
 

(ଵܧ)ܲ =
൫ଵଷ

ହ ൯

൫ହଶ
ହ ൯

=
(13)(12)(11)(10)(9)

(52)(51)(50)(49)(48)
= 0.0005, 

 
approximately. Next, let E2 be the set of outcomes in which at least one card is a 
spade. Then E2

* is the set of outcomes in which no card is a spade. There are 
ଶݎ

∗ = ൫ଷଽ
ହ ൯such outcomes. Hence 

 

ଶܧ)ܲ
∗) =

൫ଵଷ
ହ ൯

൫ହଶ
ହ ൯

(ଶܧ)ܲ   ݀݊ܽ           = 1 − ଶܧ)ܲ
∗). 

Now suppose that E3 is the set of outcomes in which exactly three cards are kings 
and exactly two cards are queens. We can select the three kings in any one of ൫ସ

ଷ൯ 

ways and the two queens in anyone of ൫ସ
ଶ൯ ways. By a well-known counting 

principle, the number of outcomes in E3 is 

ଷݎ = ൬
4
3

൰ ൬
4
2

൰. 

 

Thus, ܲ(ܧଷ) =
൫ସ

ଷ൯൫ସ
ଶ൯

൫ହଶ
ହ ൯

൘  · Finally, let E4be the set of outcomes in which there 

are exactly two kings, two queens, and one jack. Then 
 

(ସܧ)ܲ =
൫ସ

ଶ൯൫ସ
ଶ൯൫ସ

ଵ൯

൫ହଶ
ହ ൯

, 

 
because the numerator of this fraction is the number of outcomes in E4. 
 
 
Example 2. A lot, consisting of 100 fuses, is inspected by the following 
procedure. Five of these fuses are chosen at random and tested; if all 5"blow" at 
the correct amperage, the lot is accepted. If, in fact, there are 20 defective fuses in 
the lot, the probability of accepting the lot is, under 
appropriate assumptions, 
 

൫଼
ହ ൯

൫ଵ
ହ ൯

= 0.32, 

approximately. More generally, let the random variable X be the number of 
defective fuses among the 5 that are inspected. The space of X is d ={x; x = 0, 1, 
2, 3, 4, 5} and the p.d.f. of X is given by 
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(ݔ)݂ = Pr(ܺ = (ݔ = ቐ
൫ଶ

௫ ൯൫ ଼
ହି௫൯

൫ଵ
ହ ൯

ݔ           , = 0,1,2,3,4,5,

.݁ݎℎ݁ݓ݁ݏ݈݁                         0

  

 
This is an example of a discrete type of distribution called a hyper geometric 
distribution. 
 
 
1.7.  Mathematical Expectation 
Let X  be a random variable having a p.d.f. f(x), and let u(X) be a function of X 
such that  ݔ݀ (ݔ)݂(ݔ)ݑ

ஶ
ିஶ  exists, if X is a continuous type of random variable, or 

such that 

[(࢞)࢛]ࡱ =  (࢞)ࢌ(࢞)࢛
࢞

 

exists, if X is a discrete type of random variable. The integral, or the sum, as the 
case may be, is called the mathematical expectation. 

 
Remarks.  
The usual definition of E[u(X)] requires that the integral(or sum) converge 
absolutely. 
We may observe that u(X) is a random variable Y with its own distribution of 
probability. Suppose the p.d.f. of Y is g(y). Then E(y) is given by  

න  ݕ݀ (ݕ)݃ݕ
ஶ

ିஶ
 ݎ      ,(ݕ)݃ݕ

௬

 

According as Y of the continuous type or of the discrete type. 
 
 
Results: 
(a) If k is a constant, then E(k) = k. 
(b) If  k is a constant and v is a function, then E(kv) = kE(v). 
(c) If k1 and k2 are constants and v1 and v2 are functions, then E(k1v1+k2v2) = 
k1E(v1) + k2E(v2). 
 
Example 1. Let X have the p.d.f. 

(ݔ)݂ = ቄ2(1 − 0           ,(ݔ < ݔ < 1,
.݁ݎℎ݁ݓ݁ݏ݈݁                         0

  

Then 
 

(ܺ)ܧ = න ݔ݀(ݔ)݂ݔ
ஶ

ିஶ
=  න 1)2(ݔ) −  ݔ݀(ݔ

ஶ

ିஶ
=

1
3

, 

(ଶܺ)ܧ = න ݔ݀(ݔ)ଶ݂ݔ
ஶ

ିஶ
= න 2(1(ଶݔ) − (ݔ

ஶ

ିஶ
=

1
6

, 

And, of course, 
                          E(6X+3X2) = 6(1/3)+3(1/6) = 5/2 
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Example 2. Let X have the p.d.f. 
 

(ݔ)݂ = ൝
ݔ
6

ݔ               , = 1,2,3,

݁ݎℎ݁ݓ݁ݏ݈݁                  ,0
.  

 
 
Then, 
 

(ଷܺ)ܧ =  (ݔ)ଷ݂ݔ
௫

=  ଷݔ ݔ
6

ଷ

௫ୀଵ

=  
1
6

+
16
6

+
81
6

=
98
6

. 

 
 
Example  3. Let X and Y have the p.d.f. 
 

,ݔ)݂ (ݕ = ቄݔ + 0     ,ݕ < ݔ < 1.  0 < ݕ < 1,
.݁ݎℎ݁ݓ݁ݏ݈݁                         0

  

 
Then, 
 

(ଶܻܺ)ܧ = න න ,ݔ)ଶ݂ݕݔ ݕ݀ ݔ݀(ݕ
ஶ

ିஶ

ஶ

ିஶ
 

                          = න න ݔ)ଶݕݔ + ݕ݀ ݔ݀ (ݕ
ଵ



ଵ


=

17
72

 

 
 
 
Example 4. Let us divide, at random, a horizontal line segment of length 5 into 
two parts. If X is the length of the left-hand part, it is reasonable to assume that X 
has the p.d.f. 
 

(ݔ)݂ = ൝
1
5

,                   0 < ݔ < 5,

.݁ݎℎ݁ݓ݁ݏ݈݁                   0

  

 
The expected value of the length X is E(X) = 5/2 and the expected value of the 
length 5-x is E(5-x) = 5/2. But the expected value of the product of the two 
lengths is equal to  
 

5)ܺ]ܧ − [(ݔ = න 5)ݔ − (ݔ ൬
1
5

൰ ݔ݀
ହ


=  

25
6

≠ ൬
5
2

൰
ଶ 

. 

 
That is, in general, the expected value of a product is not equal to the product of 
the expected values. 
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Example 5. A bowl contains five chips, which cannot be distinguished by a sense 
of touch alone. Three of the chips are marked $1 each and the remaining two are 
marked $4 each. A player is blindfolded and draws, at random and without 
replacement, two chips from the bowl. The player is paid an amount equal to the 
sum of the values of the two chips that he draws and the game is over. If it costs 
$4.75 cents to play this game, would we care to participate for any protracted 
period of time? Because we are unable to distinguish the chips by sense of touch, 
we assume that each of the 10 pairs that can be drawn has the same probability of 
being drawn. Let the random variable X be the number of chips, of the two to be 
chosen, that are marked $1. Then, under our assumption, X has the hyper 
geometric p.d.f. 
 

(ݔ)݂ = ቐ
൫ଷ

௫൯൫ ଶ
ଶି௫൯

൫ହ
ଶ൯

ݔ           , = 0,1,2,

.݁ݎℎ݁ݓ݁ݏ݈݁                       0

  

 
If X = x, the player receives (ݔ)ݑ = ݔ + 4(2 − (ݔ = 8 −  dollars. Hence his ݔ3
mathematical expectation is equal to  
 

8]ܧ                                       − 3ܺ] = (8 − (ݔ)݂(ݔ3
ଶ

௫ୀ

=
44
10

, 

or $4.40. 
 
1.8.  Some Special Mathematical Expectations 
let u(X) = X, where X is a random variable of the discrete type having a p.d.f. f(x). 
Then 
 

(ݔ)ܧ =  .(ݔ)݂ݔ
௫

 

 
If the discrete points of the space of positive probability density are a1,a2,a3,…., 
then 
 

(ܺ)ܧ =  ܽଵ݂(ܽଵ) + ܽଶ݂(ܽଶ) + ܽଷ݂(ܽଷ) + ⋯. 
 
This sum of products is seen to be a "weighted average" of the values a1,a2,a3,…, 
the "weight" associated with each ai, being f(ai) . This suggests that we call E(X) 
the arithmetic mean of the values of X, or, more simply, the mean value of X (or 
the mean value of the distribution). 
 
The mean value µ of a random variable X is defined, when it exists, to be µ = 
E(X), where X is a random variable of the discrete or of the continuous type. 
 
The variance of X will be denoted by a2 , and we define a2, if  it exists, by a2 = 
E[(X - µ)2], whether X is a discrete or a continuous type of random variable. 
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It is worthwhile to observe that  
 

ଶߪ = ܺ)]ܧ − μ)ଶ] = ଶܺ)ܧ − 2μܺ + μଶ); 
 
and since E is a linear operator, 
 

ଶߪ     = (ଶܺ)ܧ − 2μܧ(ܺ) + μଶ 
 

                 = (ଶܺ)ܧ − 2μଶ + μଶ 
 

ଶߪ = (ଶܺ)ܧ − μଶ. 
 
Example 1. Let X have the p.d.f. 
 

(ݔ)݂ = ൝
1
2

ݔ) + 1) ,               − 1 < ݔ < 1,

݁ݎℎ݁ݓ݁ݏ݈݁                             0
.  

 
Then the mean value of X is 
 

μ = න ݔ݀(ݔ)݂ݔ
ஶ

ିஶ
= න ݔ

ݔ + 1
2

ଵ

ିଵ
ݔ݀ =

1
3

 

 
While the variance of X is  
 

ଶߪ = න ݔ݀(ݔ)ଶ݂ݔ
ஶ

ିஶ
− μଶ = න ଶݔ ݔ + 1

2

ଵ

ିଵ
ݔ݀ − ൬

1
3

൰
ଶ

=
2
9

. 

 
Example 2. If X has the p.d.f. 
 

(ݔ)݂ = ൝
1

ଶݔ ,                 1 < ݔ < ∞,

.݁ݎℎ݁ݓ݁ݏ݈݁               0

  

 
Then the mean value of X does not exist, since 
 

න ݔ
1

ଶݔ ݔ݀
ஶ

ଵ
=  lim

→ஶ
න

1
ݔ

ݔ݀


ଵ
 

 
                             = lim

→ஶ
(ln ܾ − ln 1) 

does not exist. 
 
Example 3. Given that the series 
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1
1ଶ +

1
2ଶ +

1
3ଶ + ⋯. 

 
converges to ߨଶ 6.⁄  Then 
 

(ݔ)݂ = ൝
6

ଶݔଶߨ ݔ              , = 1,2,3, … ,

.݁ݎℎ݁ݓ݁ݏ݈݁                   0

  

 
is the p.d.f. of a discrete type of random variable X. The moment-generating 
function of this distribution, if it exists, is given by 
 

(ݐ)ܯ = (௧݁)ܧ =  ݁௧௫݂(ݔ)
௫

 

 

= 
6݁௧௫

ଶݔଶߨ .

ஶ

௫ୀଵ

 

 
Example 4. Let X have the moment-generating function (ݐ)ܯ = ݁௧మ ଶ⁄ , −∞ <
ݐ < ∞. We can differentiate M(t) any number of times to find the moments of X. 
However it is instructive to consider this alternative method. The function M(t) is 
represented by the following MacLaurin’s series. 

݁௧మ ଶ⁄ = 1 +
1
1!

ቆ
ଶݐ

2
ቇ +

1
2!

ቆ
ଶݐ

2
ቇ

ଶ

+ ⋯ +
1
݇!

ቆ
ଶݐ

2
ቇ



+ ⋯ 

 

                               = 1 +
1
2!

ଶݐ +
(3)(1)

4!
ସݐ + ⋯ +

(2݇ − 1) … (3)(1)
(2݇)!

ଶݐ + ⋯ 

 
In general, the MacLaurin’s series for M(t) is 
 

(ݐ)ܯ = (0)ܯ +
ᇱ(0)ܯ

1!
ݐ +

ᇱᇱ(0)ܯ

2!
ଶݐ + ⋯ +

(0)()ܯ

݉!
ݐ + ⋯ 

 

= 1 +
(ܺ)ܧ

1!
ݐ +

(ଶܺ)ܧ
2!

ଶݐ + ⋯ +
(ܺ)ܯ

݉!
ݐ + ⋯ 

 
Thus the coefficient of (tm/m!) in the MacLaurin’s series representation of M(t) is 
E(Xm). So, for our particular M(t), we have 
 

(ଶܺ)ܧ                              = (2݇ − 1)(2݇ − 3) … (3)(1) =
(2݇)!
2݇!

 

 
k = 1,2,3,…, and E(X2k-1) = 0, k = 1,2,3,….  
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1.9.  Chebyshev's Inequality 
 
Theorem 6. Let u(X) be a nonnegative function of the random variable X. If 
E[u(X)] exists, then, for every positive constant c, 
 
Proof. 
The proof is given when the random variable X is of the continuous type; but the 
proof can be adapted to the discrete case if we replace integrals by sums. Letܣ =
;ݔ} (ݔ)ݑ  ≥ ܿ}and let f(x) denote the p.d.f. of X. Then 
 

[(ܺ)ݑ]ܧ = න ݔ݀(ݔ)݂(ݔ)ݑ
ஶ

ିஶ
= න ݔ݀(ݔ)݂(ݔ)ݑ


+ න .ݔ݀(ݔ)݂(ݔ)ݑ

∗
 

 
Since each of the integrals in the extreme right-hand member of the preceding 
equation is nonnegative, the left-hand member is greater than or equal to either of 
them. In particular, 
 

[(ܺ)ݑ]ܧ ≥ න .ݔ݀(ݔ)݂(ݔ)ݑ


 

 
However, if ܣ ߳ ݔ, then(ݔ)ݑ ≥ ܿ ; accordingly, the right-hand member of the 
preceding inequality is not in creed if we replace u(x) by c. Thus 
 

[(ܺ)ݑ]ܧ ≥ ܿ න .ݔ݀(ݔ)݂


 

 
Since 
 

න ݔ݀(ݔ)݂


= Pr(ܺ ∈ (ܣ = Pr[ݑ(ܺ) ≥ ܿ], 

 
It follows that  
 

[(ݔ)ݑ]ܧ ≥ (ܺ)ݑ]ݎܲܿ ≥ ܿ], 
 
which is the desired result. 
 
 
 
Theorem 7. Chebyshev's Inequality. Let the random variable X have a 
distribution of probability about which we assume only that there is a finite 
variance σ2. This, of course, implies that there is a mean µ. Then for every k > 0, 
 

Pr(|ܺ − |ߤ ≥ (ߪ݇ ≤
1

݇ଶ, 
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or, equivalently, 
 

Pr (|ܺ − |ߤ < ݇ܽ) ≥ 1 −
1

݇ଶ. 

Proof. 
In the above Theorem 6 take ݑ(ܺ) = (ܺ − ܿ ଶ and(ߤ = ݇ଶߪଶ. Then we have 
 

Pr[(ܺ − ଶ(ߤ ≥ ݇ଶߪଶ] ≤
ܺ)]ܧ − [ଶ(ߤ

݇ଶߪଶ . 

 
Since the numerator of the right-hand member of the preceding inequality is σ2, 
the inequality may be written 
 

Pr(|ܺ − |ߤ ≥ (ߪ݇ ≤  
1

݇ଶ, 

 
which is the desired result. Naturally, we would take the positive number k to be 
greater than 1 to have an inequality of interest. 
 
It is seen that the number 1/k2 is an upper bound for the probabilityPr(|ܺ − |ߤ ≥
 In the following example this upper bound and the exact value of the.(ߪ݇
probability are compared in special instances. 
 
Example 1. Let X have the p.d.f. 
 

(ݔ)݂ = ൝
1

2√3
,            − √3 < ݔ < √3,

.݁ݎℎ݁ݓ݁ݏ݈݁                    0

  

 

Here µ = 0 and σ2 = 1. If ݇ =
ଷ

ଶ
, we have the exact probability 

 

Pr(|ܺ − |ߤ ≥ (ߪ݇ = Pr ൬|ܺ| ≥
3
2

൰ = 1 − න
1

2√3
ݔ݀

ଷ ଶ⁄

ିଷ ଶ⁄
= 1 −

√3
2

. 

 
By Chebyshev’s inequality, the preceding probability has the upper bound 

1 ݇ଶ =
ସ

ଽ
ൗ . Since     1 − √ଷ

ଶ
= 0.134, approximately, the exact probability in this 

case is considerably less than the upper bound 
ସ

ଽ
. If we take k = 2, we have the 

exact probability  
Pr(|ܺ − |ߤ ≥ (ߪ2 = Pr(|ܺ| ≥ 2) = 0. 

This again is considerably less than the upper bound 
ଵ

మ = ଵ

ସ
 provided by 

Chebyshev’s inequality. 
 
In each instance in the preceding example, the probability Pr (|ܺ − |ߤ ≥  and (ߪ݇
its upper bound 1/k2 differ considerably. This suggests that this inequality might 
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be made sharper.  However, if we want an inequality that holds for k>0 and holds 
for all random variables having finite variance, such an improvement is 
impossible as is shown by the following example. 
 
Example 2. Let the random variable X of the discrete type have probabilities 
ଵ

଼
,



଼
,

ଵ

଼
 at the points x = -1, 0, 1, respectively. Here µ = 0 and σ2= t. If k = 2, then 

1/k2= t and  

Pr(|ݔ − |ߤ ≥ (ߪ݇ = Pr(|ܺ| ≥ 1) =
1
4

. 

That is, the probability Pr(|ܺ − |ߤ ≥  =here attains the upper bound 1/k2(ߪ݇
ଵ

ସ
. 

Hence the inequality cannot be improved without further assumptions about the 
distribution of X. 
 
 
 
Exercise: 
 
1. A point is to be chosen in a haphazard fashion from the interior of a fixed 
circle. Assign a probability p that the point will be inside another circle, which has 
a radius of one-half the first circle and which lies entirely within the first circle. 
2. An unbiased coin is to be tossed twice. Assign a probability P1 to the event that 
the first toss will be held and that the second toss will be a tail. Assign a 
probability P2 to the event that there will be one head and one tail in the two 
tosses. 
 
3. Find the union A1ՍA2 and the intersection A1ՈA2 of the two sets A1 and A2, 
where  
a) A1 = {x; x = 0,1,2}, A2 = {x; x =2,3,4} 

    b)  A1 = {x, 0 <x<2}, A2={x; 1≤ x<3} 
     c) A1 = {(x, y); 0<x<2, 0<y<2}, A2 = {(X,Y); 1<X<3, 1<Y<3}. 
 
4. If the sample space is C = C1ՍC2 and if P(C1) = 0.8 and P(C2) = 0.5, find 
P(C1ՈC2). 
 
5. Let the space of the random variable X be A ={x; 0<x<10} if A1 = {x; 
0<x<1/2} and A2 = {x; ½<x<1},find P(A2) if P(A1). 
 
6. Let the subsets A1 ={x; ¼<x<1/2} and A2 = {x; ½<x<1} of the space A = {x; 
0<x<1} of the random variable X be such that P(A1) = 1/8 and P(A2) = ½. Find 
P(A1ՍA2). P(A1

*) and P(A1*ՈA2
*). 

 

7. Give  ቂ
ଵ

గ
(1 + ଶ)ቃݔ ݔ݀ , where A  A = {x; -<x<} show that the integral 

could serve as a probability set function of a random variable X whose space is A. 
 
8. What is the value of  ݔ݀ ௫ି݁݊ݔ

ஶ
 , where n is a nonnegative integer? 
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9. Let ݂(ݔ) = ቊ
௫

ଵହ
ݔ         , = 1,2,3,4,5,

.݁ݎℎ݁ݓ݁ݏ݈݁              0
  Be the p.d.f. of X. Find Pr(X=1 or 2). 

Pr(1/2<X<5/2) and Pr(1≤X≤2). 
 
10. Compute the probability of being dealt at random and without replacements a 
13-card bridge hand consisting of (a) 6 spades, 4 hearts, 2 diamonds and 1 club; 
(b) 13 cards of the same suit. 
 
11. Let X have the uniform distribution given by the 

p.d.f.݂(ݔ) = ቊ
ଵ

ହ
ݔ      , = −2, −1,0,1,2,

.݁ݎℎ݁ݓ݁ݏ݈݁               0
 . Find the p.d.f of Y = X2. 

 

12. Let the p.d.f. of X and Y be ݂(ݔ, (ݕ = ቄ݁ି௫ି௬ ,    0 < ݔ < ∞, 0 < ݕ < ∞,
݁ݎℎ݁ݓ݁ݏ݈݁                       0

.  Let 

u(X,Y) =X, v(X,Y) = Y and w(X,Y) = XY. Show that E[u(X,Y)].E[v(X,Y)] = 
E[w(X,Y)]. 
 
13. Let X have a p.d.f. f(x) is positive at x = -1,0,1 and is zero elsewhere 

a) If f(0) = ½, find E(X2). 
b) If f(0) = ½, and if E(X) = 1/6, determine F(-1) and f(1). 

 

14. Let ݂(ݔ) = ቊ(
ଵ

ଶ
)ଷ, ݔ = 1,2,3, … . ,

.݁ݎℎ݁ݓ݁ݏ݈݁      0
  Be the p.d.f. of the random variable X. Find 

the moment-generating function, the mean and the variance of X. 
 
15. Let the random variable X have the p.d.f. 

(ݔ)݂ = ൝
ݔ                 ,     = −1,1,

1 − ݔ            ,2 = 0
݁ݎℎ݁ݓ݁ݏ݈݁             0

  , Where 0<p<1/2. Find the measure of kurtosis 

as a function of p. Determine its value when p = 1/3, p = 1/5, p = 1/10 and p = 
1/100. Note that the kurtosis increases as p decreases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



31 
 

Unit II 
CONDITIONAL PROBABILITY AND STOCHASTIC  

INDEPENDENCE 
2.1 Conditional Probability 
 
Let the probability set function P(C) be defined on the sample space and let C1 be 
a subset of such that P(C1)>0. The conditional probability  of the event C2, 
relative to the event C1 or, more briefly, the conditional probability of C2, given 
C1 is denoted by P(C2|C1) and is defined by 
 

(ଵܥ|ଵܥ)ܲ = (ଵܥ|ଶܥ)ܲ  ݀݊ܽ        1 = ଵܥ)ܲ ∩  (ଵܥ|ଶܥ
 
Hence 
 

(ଵܥ|ଶܥ)ܲ =
ଵܥ)ܲ ∩ (ଶܥ 

(ଵܥ)ܲ
. 

 
In a suitable definition of the conditional probability of the event C2, given the 
event C1, provided P(C1) > 0. 
 
Let P denote the probability set function of the induced probability on A. If A1 

and A2 are subsets of A, the conditional probability of the event A2 , given the 
event A1 , is 
 

(ଵܣ|ଶܣ)ܲ =  
ଵܣ)ܲ ∩ (ଶܣ

(ଵܣ)ܲ
 

provided P(A1) >0. 
 
Example 1. A hand of 5 cards is to be dealt at random and without replacement 
from an ordinary deck of 52 playing cards. The conditional probability of an all-
spade hand (C2) , relative to the hypothesis that there are at least 4 spades in the 
hand (C1) , is, since C1 Ո C2 = C2. 
 

(ଵܥ|ଶܥ)ܲ =
(ଶܥ)ܲ

(ଵܥ)ܲ
=

൫ଵଷ
ହ ൯ ൫ହଶ

ହ ൯ൗ

ൣ൫ଵଷ
ସ ൯൫ଷଽ

ଵ ൯ + ൫ଵଷ
ହ ൯]/൫ହଶ

ହ ൯ . 

 
 
Example 2. A bowl contains eight chips. Three of the chips are red and the 
remaining five are blue. Two chips are to be drawn successively, at random and 
without replacement. We want to compute the probability that the first draw 
results in a red chip (C1) and that the second draw results in a blue chip (C2) . It is 
reasonable to assign the following probabilities: 
 

                              P(C1) = 
ଷ

଼
         and   P(C2|C1) = 

ହ


. 
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Thus, under these assignments, we have  
 

ଵܥ)ܲ ∩ (ଶܥ =  ൬
3
8

൰ ൬
5
7

൰ =
15
56

. 

 
Example 3. From an ordinary deck of playing cards, cards are to be drawn 
successively, at random and without replacement. The probability that the third 
spade appears on the sixth draw is computed as follows. Let C1 be the event of 
two spades in the first five draws and let C2 be the event of a spade on the sixth 
draw. Thus the probability that we wish to compute is P(C1Ո C2) . It is reasonable 
to take 
 

(ଵܥ)ܲ =
൫ଵଷ

ଶ ൯൫ଷଽ
ଷ ൯

൫ହଶ
ହ ൯

(ଵܥ|ଶܥ)ܲ  ݀݊ܽ          =
11
47

. 

 
The desired probability P(C1Ո C2) is then the product of these two numbers.More 
generally, if X + 3 is the number of draws necessary to produce exactly three 
spades, a reasonable probability model for the random variable X is given by the 
p.d.f. 
 

(ݔ)݂ = ቐቈ
൫ଵଷ

ଶ ൯൫ଷଽ
௫ ൯

൫ ହଶ
ଶା௫൯

 ൬
11

50 − ݔ
൰ ݔ      , = 0,1,2, … ,39,

.݁ݎℎ݁ݓ݁ݏ݈݁                                  0

  

 
Then the particular probability which we computed is P(C1ՈC2) =  Pr(X = 3) = 
f(3). 
 
Example 4. Four cards are to be dealt successively, at random and without 
replacement, from an ordinary deck of playing cards. The probability of receiving 

a spade, a heart, a diamond, and a club, in that order, is ቀଵଷ

ହଶ
ቁ ቀଵଷ

଼ଵ
ቁ ቀଵଷ

ହ
ቁ ቀଵଷ

ସଽ
ቁ. This 

follows from the extension of the multiplication rule.In this computation, the 
assumptions that are involved seem clear. 
 
2.2 Marginal and Conditional Distributions 
 
Let ݂(ݔଵ,  ,ଶ)be the p.d.f. of two random variables X1and X2.From this point onݔ
for emphasis and clarity, we shall call a p.d.f. or a distribution function a joint 
p.d.f. or a joint distribution function when more than one random variable is 
involved. Thus݂(ݔଵ,  .ଶ) is the joint p.d.f. of the random variables X1 and X2ݔ
Consider the event a < X1<b, a <b. This event can occur when and only when the 
event a < X1<b, -< X2< occurs; that is, the two events are equivalent, so that 
they have the same probability. But the probability of the latter event has been 
defined and is given by 
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Pr(ܽ < ܺଵ < ܾ, −∞ < ܺଶ < ∞) = න න ,ଵݔ)݂ ଵݔଶ݀ݔ݀(ଶݔ

ஶ

ିஶ




 

 
for the continuous case, and by 
 

Pr(ܽ < ܺଵ < ܾ, −∞ < ܺଶ < ∞) =   ,ଵݔ)݂ (ଶݔ
௫మழ௫మழ

 

 
for the discrete case. Now each of 
 

න ,ଵݔ)݂ ଶݔ݀(ଶݔ

ஶ

ିஶ
      ܽ݊݀        ,ଵݔ)݂ (ଶݔ

௫మ

 

Is a function of x1 alone, say ଵ݂(ݔଵ). Thus, for every a<b, we have 

Pr(ܽ < ଵܺ < ܾ) =

ە
ۖ
۔

ۖ
ۓ න ଵ݂(ݔଵ)݀ݔଵ,   (ܿ݁ݏܽܿ ݏݑݑ݊݅ݐ݊),





 ଵ݂(ݔଵ),          (݀݅݁ݏܽܿ ݁ݐ݁ݎܿݏ).
ழ௫భழ

  

so that f1(x1)is the p.d.f. of X1 alone. Since f1(x1) is found by summing (or 
integrating) the joint p.d.f.݂(ݔଵ,  ଶ) over all x2 for a fixed x1 we can think ofݔ
recording this sum in the" margin" of the x1x2- plane. Accordingly, ଵ݂(ݔଵ)is called 
the marginal p.d.f. of X1 In like manner 
 

ଶ݂(ݔଶ) =

ە
ۖ
۔

ۖ
නۓ ,ଵݔ)݂ ,(݁ݏܽܿ ݏݑݑ݊݅ݐ݊ܿ)   ,ଵݔ݀(ଶݔ

ஶ

ିஶ

 ,ଵݔ)݂ .(݁ݏܽܿ ݁ݐ݁ݎܿݏ݅݀)        ,(ଶݔ
௫భ

  

 
is called the marginal p.d.f. of X2. 
 
Example 1. Let the joint p.d.f. of X1 and X2be 
 

,ଵݔ)݂ (ଶݔ = ൝
ଵݔ + ଶݔ

21
ଵݔ    , = 1,2,3, ଶݔ = 1,2,

.݁ݎℎ݁ݓ݁ݏ݈݁              0

  

 
Then, for instance, 

Pr(ܺଵ = 3) = ݂(3,1) + ݂(3,2) =
3
7

 

And 

Pr(ܺଶ = 2) = ݂(1,2) + ݂(2,2) + ݂(3,2) =
4
7

. 
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On the other hand, the marginal p.d.f. of  X1 is 
 

ଵ݂(ݔଵ) = 
ଵݔ + ଶݔ

21

ଶ

௫మୀଵ

=
ଵݔ2 + 3

21
, ଵݔ = 1,2,3 

 
Zero elsewhere, and the marginal p.d.f. of X2 
 

ଶ݂(ݔଶ) = 
ଵݔ + ଶݔ

21

ଷ

௫భୀଵ

=  
6 + ଶݔ3

21
ଶݔ    , = 1,2, 

Zero elsewhere. Thus preceding probabilities may be computed as Pr( ଵܺ = 3) =

ଵ݂(3) =
ଷ


 

and Pr(ܺଶ = 2) = ଶ݂(2) = ସ


. 

 
 
Example 2. Let the joint p.d.f. of X1 and X2be 
 
 

,ଵݔ)݂ (ଶݔ = ቄ2,      0 < ଵݔ < ଶݔ < 1,
݁ݎℎ݁ݓ݁ݏ݈݁           0

  

 
Then the marginal probability density functions are, respectively, 
 

ଵ݂(ݔଵ) = ቐන ଶݔ2݀

ଵ

௫భ

= 2(1 − ଵ),        0ݔ < ଵݔ < 1,

.݁ݎℎ݁ݓ݁ݏ݈݁                              0

  

And 
 

ଶ݂(ݔଶ) = ቐන ଵݔ2݀

௫మ


= 0        ,(ଶݔ)2 < ଶݔ < 1,

.݁ݎℎ݁ݓ݁ݏ݈݁                              0

  

 
The conditional p.d.f. of X1, given X2 = ݔଶ, is 
 

(ଶݔ|ଵݔ)݂ = ൝
2

ଶݔ2
=

1
ଶݔ

, 0 < ଵݔ < ,ଶݔ 0 < ଶݔ < 1,

.݁ݎℎ݁ݓ݁ݏ݈݁                              0

  

 
Here the conditional mean and conditional variance of X1, given X2 = ݔଶ, are 
respectively, 
 

(ଶݔ|ଵܺ)ܧ = න (ଶݔ|ଵݔ)ଵ݂ݔ
ஶ

ିஶ
 ଵݔ݀
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             = න ଵݔ ൬
1
ଶݔ

൰
௫మ


 ଵݔ݀

 

               =
ଶݔ

2
,     0 < ଶݔ < 1 

 
and  

]}ܧ ଵܺ − {ଶݔ|ଶ[(ଶݔ|ଵܺ)ܧ  = න ଵݔ) −
ଶݔ

2
)ଶ ൬

1
ଶݔ

൰ ଵݔ݀

௫మ


 

 

=
ଶݔ

ଶ

12
,          0 < ଶݔ < 1 

 

Finally, we shall compare the values of Pr (0 < X1<
ଵ

ଶ
 |X2 =

ଷ

ସ
) andPr (0 < X1<

ଵ

ଶ
). 

We have 
 

Pr ൬0 < ܺଵ <
1
2

ฬܺଶ  =  
3
4

൰ = න |ଵݔ)݂

భ
మ



3
4

ଵݔ݀( = න ൬
4
3

൰

భ
మ


ଵݔ݀ =

2
3

, 

But 
 

Pr ൬0 < ܺଵ <
1
2

൰ = න ଵ݂(ݔଵ)݀ݔଵ

భ
మ


= න 2(1 − ଵݔ݀(ଵݔ

భ
మ


=

3
4

. 

 
Let the random variables X1,X2,…Xn have the joint p.d.f. f (x1,x2,…,xn).If the 
random variables are of the continuous type, then by an argument similar to the 
two-variable case, we have for every a <b, 
 

Pr(ܽ < ܺଵ < ܾ) = න ଵ݂(ݔଵ)݀ݔଵ,



 

 
where ଵ݂(ݔଵ) is defined by the (n-1) fold integral 
 

ଵ݂(ݔଵ) = න … … න  f (xଵ, xଶ, … , x)݀ݔଶ … . . ݔ݀

ஶ

ିஶ

ஶ

ିஶ
 

 
Accordingly, ଵ݂(ݔଵ) is the p.d.f. of the one random variableX1 and ଵ݂(ݔଵ)is called 
the marginal p.d.f. of X1.The marginal probability density functions, 
 ଶ݂(ݔଶ),…, ݂(ݔ) of x2,…,xn respectively, are similar (n- l)-fold integrals. Each 
marginal p.d.f. has been a p.d.f. of one random variable. It is convenient to extend 
this terminology to joint probability density functions. Let f (x1,x2,…,xn) be the 
joint p.d.f. of the n random variables X1,X2,…Xn. Take any group of k <n of these 
random variables and let us find the joint p.d.f. of them. This joint p.d.f. is called 
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the marginal p.d.f. of this particular group of k variables. The marginal p.d.f. of 
X2,X4,X5, is  the joint p.d.f. of this particular group of three variables, namely 
 

න න න (xଵ, xଶ, … , x)
ஶ

ିஶ

ஶ

ିஶ

ஶ

ିஶ
 ݔଷ݀ݔଵ݀ݔ݀

 
if the random variables are of the continuous type. 
 
If ଵ݂(ݔଵ) > 0, the symbol   
 

݂(xଶ, xଷ, … , x|xଵ) =
݂(xଵ, xଶ, … , x)

ଵ݂(ݔଵ)
 

 
and ݂(xଶ, xଷ, … , x|xଵ) is called the joint conditional p.d.f. of  X2,…Xn given by 
X1 = ݔଵ. The joint conditional p.d.f of any n - 1 random variables, say X1,……,Xi-

1,Xi+1,…….,Xn given  Xi = xi is defined as the joint p.d.f. of X1,X2,…Xn divided 
by marginal p.d.f. ݂(ݔ) provided ݂(ݔ)> 0. More generally, the joint conditional 
p.d.f. of n - k of the random variables, for given values of the remaining k 
variables, is defined as the joint p.d.f. of the n variables divided by the marginal 
p.d.f. of the particular group of k variables, provided the latter p.d.f. is positive. 
the conditional expectation of u(X2,…Xn)given X1 = ݔଵis, for random variables of 
the continuous type, given by 
 

,ଶܺ)ݑ]ܧ … … , ܺ|ݔଵ)

= න … … න  u(xଶ, … , x)f (xଵ, xଶ, … , x|xଵ)݀ݔଶ … . . ݔ݀

ஶ

ିஶ

ஶ

ିஶ
, 

 
provided ଵ݂(ݔଵ) > 0  and the integral converges (absolutely). 
 
2.3 The Correlation Coefficient 
 
Let X, Y, and Z denote random variables that have joint p.d.f.f(x, y, z). The means 
of X, Y, and Z, say µ1,µ2 and µ3are obtained by taking u(x, y, z)to be x, y, and z, 
respectively; and the variances of X, Y, and Z, say σ1

2,σ2
2 and σ3

2 are  obtained by 
setting the function u(x, y, z)equal to (x - µ1)

2, (y - µ2)
2 and (z - µ3)

2, respectively, 
 
ܺ)]ܧ − ܻ)(ଵߤ − [(ଶߤ = ܻܺ)ܧ − ଶܺߤ − ଵܻߤ +  .(ଶߤଵߤ
 

= (ܻܺ)ܧ − (ܺ)ܧ2ߤ − (ܻ)ܧଵߤ +  ଶߤଵߤ
 

= (ܻܺ)ܧ −  .ଶߤଵߤ
 
This number is called the covariance of X and Y. The covariance of X and Z is 
given by E[(X −ߤଵ)(Z −ߤଷ)], and the covariance of Y and Z is E[(Y −ߤଶ)(Z 
 ଷ)]. If each of σ1 and σ2 positive, the numberߤ−
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ଵଶߩ =
ܺ)]ܧ − ܻ)(ଵߤ − [(ଶߤ

ଶߪଵߪ
 

 
is called the correlation coefficient of X and Y. 
 
Example 1. Let the random variables X and Y have the joint p.d.f. 
 

,ݔ)݂ (ݕ = ቄݔ + 0    ,ݕ < ݔ < 1,0 < ݕ < 1,
.݁ݎℎ݁ݓ݁ݏ݈݁                0

  

 
Compute the correlation coefficient of X and Y. When only two variables are 
under consideration, we shall denote the correlation coefficient by ρ. Now 
 

ଵߤ = (ܺ)ܧ = න න ݔ)ݔ + ݕ݀ ݔ݀(ݕ
ଵ



ଵ


=

7
12

 

 
 
and 

ଵߪ
ଶ = (ଶܺ)ܧ − ଵߤ

ଶ = න න ݔ)ଶݔ + ݕ݀ ݔ݀(ݕ
ଵ



ଵ


− ൬

7
12

൰
ଶ 

=
11

144
. 

 
Similarly 
 

ଶߤ = (ܻ)ܧ =
7

12
ଶߪ   ݀݊ܽ    

ଶ = (ଶܻ)ܧ − ଶߤ
ଶ  =

11
144

. 

 
The covariance of X and Y is  
 

(ܻܺ)ܧ − ଶߤଵߤ = න න ݔ)ݕݔ + ݕ݀ ݔ݀(ݕ
ଵ



ଵ


− ൬

7
12

൰
ଶ 

= −
1

144
. 

 
Accordingly, the correlation coefficient of X and Y is 
 

ߩ =
− ଵ

ଵସସ

ටቀ ଵଵ

ଵସସ
ቁ ቀ ଵଵ

ଵସସ
ቁ

= −
1

11
. 

 
Example 2. Let the continuous-type random variables X and Y have the joint 
p.d.f. 
 

,ݔ)݂ (ݕ = ቄ݁ି௬ ,              0 < ݔ < ݕ < ∞
.݁ݎℎ݁ݓ݁ݏ݈݁                     0

  

 
The moment-generating function of this joint distribution is  
 



38 
 

,ଵݐ)ܯ     (ଶݐ = න න exp(ݐଵݔ + ݕଶݐ − (ݕ ݔ݀ ݕ݀
ஶ



ஶ


 

 

=
1

(1 − ଵݐ − ଶ)(1ݐ − (ଶݐ
 

 
Provided ݐଵ + ଶݐ < 1 and ݐଶ < 1. For this distribution Equations  
 

ଵߪ
ଶ = (ଶܺ)ܧ − ଵߤ

ଶ =
߲ଶ(0,0)ܯ

ଵݐ߲
ଶ = μଵ

ଶ 

 
Becomes, 
 
ଵߤ ⸫           = 1, ଶߤ = 2, ଵߪ

ଶ = 1, ଶߪ
ଶ = ܺ)]ܧ ݀݊ܽ 2 − ܻ)(ଵߤ − [(ଶߤ = 1.  

 
 
Furthermore, the moment-generating functions of the marginal distributions of X 
and Y are, respectively, 
 
 

,ଵݐ)ܯ 0) =
1

1 − ଵݐ
ଵݐ      , < 1, 

 

,0)ܯ (ଶݐ =
1

(1 − ଶ)ଶݐ ଶݐ      ,  < 1. 

 
These moment-generating functions are, of course, respectively, those of the 
marginal probability density functions 
 

                                                      ଵ݂(ݔ) = න ݁ି௬݀ݕ = ݁ି௫ ,     0 < ݔ < ∞
ஶ

௫
 

 
Zero elsewhere, and 
 

      ଶ݂(ݕ) = ݁ି௬ න ݕ݀ = ௬ି݁ݕ ,     0 < ݕ < ∞
ஶ

௫
 

 
Zero elsewhere. 
 
2.4 Stochastic Independence 
 
Let X1 and X2denote random variables of either the continuous or the discrete 
type which have the joint p.d.f. f (x1,x2)  and marginal probability density 
functions. ଵ݂(ݔଵ) and . ଶ݂(ݔଶ)respectively. The joint p.d.f. f (x1,x2)  as 
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,ଵݔ)݂ (ଶݔ = (ଵݔ|ଶݔ)݂ ଵ݂(ݔଵ). 
 
 
Definition: Let the random variables X1 and X2have the joint p.d.f.݂(ݔଵ,  ଶ) andݔ
the marginal probability density functions ଵ݂(ݔଵ) and ଶ݂(ݔଶ),respectively. The 
random variables X1 and X2are said to be stochastically independent if, and only 
if, ݂(ݔଵ, (ଶݔ = ଵ݂(ݔଵ) ଶ݂(ݔଶ).Random variables that are not stochastically 
independent are said to be stochastically dependent. 
 
Example 1. Let the joint p.d.f. of X1 and X2 be 
 

,ଵݔ)݂ (ଶݔ = ቄݔଵ + ଶ,     0ݔ < ଵݔ < 1, 0 < ଶݔ < 1
.݁ݎℎ݁ݓ݁ݏ݈݁                     0

  

It will be shown that X1 and X2 are stochastically dependent. Here the marginal 
probability density functions are 

ଵ݂(ݔଵ) = න ,ଵݔ)݂ ଶݔ݀(ଶݔ

ஶ

ିஶ
= න ଵݔ) + ଶݔ݀(ଶݔ

ଵ


= ଵݔ +

1
2

,      0 < ଵݔ < 1 

=  ,݁ݎℎ݁ݓ݁ݏ݈݁          0
and 
 

ଶ݂(ݔଶ) = න ,ଵݔ)݂ ଶݔ݀(ଶݔ

ஶ

ିஶ
= න ଵݔ) + ଵݔ݀(ଶݔ

ଵ


=

1
2

+ ଶ,      0ݔ < ଵݔ < 1, 

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁          0

 
Since ݂(ݔଵ, (ଶݔ ≢ ଵ݂(ݔଵ) ଶ݂(ݔଶ), the random variables X1 and X2 are 
stochastically dependent. 
 
The following theorem makes it possible to assert, without computing the 
marginal probability density functions, that the random variables X1 and X2 of 
Example 1 are stochastically dependent. 
 
Theorem 1. Let the random variablesX1 and X2 have the joint 
p.d.f.݂(ݔଵ,  ଶ).Then X1 and X2are stochastically independent if and onlyݔ
if݂(ݔଵ,  ଶ)can be written as a product of a nonnegative function of X1 alone and aݔ
nonnegative function of X2 alone. That is, 
 

,ଵݔ)݂ (ଶݔ ≡  ,(ଶݔ)ℎ(ଵݔ)݃
 
where ݃(ݔଵ) > (ଶݔ)ଵ, zero elsewhere, and ℎܣ ଵ߳ݔ ,0 > 0,  .ଶ, zero elsewhereܣଶ߳ݔ
 
Proof. 
 
If X1 and X2 are stochastically independent, then݂(ݔଵ, (ଶݔ ≡ ଵ݂(ݔଵ) ଶ݂(ݔଶ), where 

ଵ݂(ݔଵ) ܽ݊݀ ଶ݂(ݔଶ)are the marginal probability densityfunctions X1 and X2 of 
respectively. Thus, the condition is ݂(ݔଵ, (ଶݔ ≡  .fulfilled,(ଶݔ)ℎ(ଵݔ)݃
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Conversely, if݂(ݔଵ, (ଶݔ ≡  then, for random variables ofthe continuous(ଶݔ)ℎ(ଵݔ)݃
type, we have 
 

ଵ݂(ݔଵ) = න ଶݔ݀(ଶݔ)ℎ(ଵݔ)݃

ஶ

ିஶ
= (ଵݔ)݃ න ℎ(ݔଶ)݀ݔଶ

ஶ

ିஶ
= ܿଵ݃(ݔଵ) 

 
And 
 

ଶ݂(ݔଶ) = න ଵݔ݀(ଶݔ)ℎ(ଵݔ)݃

ஶ

ିஶ
= ℎ(ݔଶ) න ଵݔ݀(ଵݔ)݃

ஶ

ିஶ
= ܿଶℎ(ݔଶ) 

 
Where c1 and c2 are constants, not functions of ݔଵ ܽ݊݀ ݔଶ. Moreover, ܿଵܿଶ = 1 
because 
 

1 = න න ଶݔଵ݀ݔ݀(ଶݔ)ℎ(ଵݔ)݃

ஶ

ିஶ

ஶ

ିஶ
= ቈන ଵݔ݀(ଵݔ)݃

ஶ

ିஶ
 ቈන ℎ(ݔଶ)݀ݔଶ

ஶ

ିஶ
 = ܿଶܿଵ.  

 
The results imply that  

,ଵݔ)݂ (ଶݔ ≡ (ଶݔ)ℎ(ଵݔ)݃ ≡ ܿଵ݃(ݔଵ)ܿଶℎ(ݔଶ) ≡ ଵ݂(ݔଵ) ଶ݂(ݔଶ). 
Accordingly, X1 and X2 are stochastically independent. 
 
From the above example 1 we see that the joint p.d.f. 
 

,ଵݔ)݂ (ଶݔ = ቄݔଵ + ଶ,     0ݔ < ଵݔ < 1, 0 < ଶݔ < 1
.݁ݎℎ݁ݓ݁ݏ݈݁                     0

  

 
cannot be written as the product of a nonnegative function of ݔଵalone and a 
nonnegative function of ݔଶ alone. Accordingly, X1 and X2are stochastically 
dependent. 
 
Theorem 2. IfX1 and X2 are stochastically independent random variables with 
marginal probability density functions ଵ݂(ݔଵ) ܽ݊݀ ଶ݂(ݔଶ) respectively, then 
 

Pr(ܽ < Xଵ < ܾ, ܿ < Xଶ < ݀) = Pr(ܽ < Xଵ < ܾ) Pr(ܿ < Xଶ < ݀) 
 
for every a < b and c < d, where a, b, c and d are constants. 
 
Proof.  
From the stochastic independence ofX1 and X2,the joint p.d.f. of X1 and X2 is 

ଵ݂(ݔଵ) ଶ݂(ݔଶ).Accordingly, in the continuous case, 
 

Pr(ܽ < Xଵ < ܾ, ܿ < Xଶ < ݀) = න න ଵ݂(ݔଵ) ଶ݂(ݔଶ)
ௗ






 ଵݔଶ݀ݔ݀
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= ቈන ଵ݂(ݔଵ)݀ݔଵ




 ቈන ଶ݂(ݔଶ)݀ݔଶ

ௗ


 

 
= Pr(ܽ < Xଵ < ܾ) Pr(ܿ < Xଶ < ݀); 

 
 
or, in discrete case, 
 

Pr(ܽ < Xଵ < ܾ, ܿ < Xଶ < ݀) =   ଵ݂(ݔଵ) ଶ݂(ݔଶ)
ழଡ଼మழௗழଡ଼భழ

 

 

                                                             =   ଵ݂(ݔଵ)
ழଡ଼భழ

   ଶ݂(ݔଶ)
ୡழଡ଼మழௗ

 

 
= Pr(ܽ < Xଵ < ܾ) Pr(ܿ < Xଶ < ݀), 

 
Example 3. In Example 1, X1 and X2were found to be stochastically dependent. 
There, in general, 
 

Pr(ܽ < Xଵ < ܾ, ܿ < Xଶ < ݀) ≠ Pr(ܽ < Xଵ < ܾ) Pr(ܿ < Xଶ < ݀). 
 
For instance, 
 

Pr ൬0 < Xଵ <
1
2

, 0 < Xଶ <
1
2

൰ = න න ଵݔ) + (ଶݔ

భ
మ



భ
మ


ଶݔଵ݀ݔ݀ =

1
8

, 

 
whereas 
 

Pr ൬0 < Xଵ <
1
2

൰ = න ൬ݔଵ +
1
2

൰

భ
మ


ଵݔ݀ =

3
8

 

 
and 
 

Pr ൬0 < Xଶ <
1
2

൰ = න ൬
1
2

ଶ൰ݔ+

భ
మ


ଶݔ݀ =

3
8

. 

 
Theorem 3. Let X1and X2 denote random variables have the joint p.d.f.݂(ݔଵ,  (ଶݔ
marginal probability density functions ଵ݂(ݔଵ) ܽ݊݀ ଶ݂(ݔଶ),respectively. 
Furthermore, let ݐ)ܯଵ,  ଶ) denote the moment-generating function of theݐ
distribution. Then X1and X2 are stochastically independent if and only if 
,ଵݐ)ܯ     (ଶݐ = ,ଵݐ)ܯ ,0)ܯ(0  .(ଶݐ
 
Proof. 
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If X1and X2 are stochastically independent, then 
 

,ଵݐ)ܯ (ଶݐ =  (௧భ௫భା௧మ௫మ݁)ܧ
 

                  =  (௧భ௫భ݁௧మ௫మ݁)ܧ
 

                         =  (௧మ௫మ݁)ܧ(௧భ௫భ݁)ܧ
 

= ,ଵݐ)ܯ ,0)ܯ(0  .(ଶݐ
 
Thus the stochastic independence of X1 and X2 implies that the moment-
generating function of the joint distribution factors into the product of the 
moment-generating functions of the two marginal distributions. 
 
Suppose next that the moment-generating function of the joint distribution of X1 
and X2is given byݐ)ܯଵ, (ଶݐ = ,ଵݐ)ܯ ,0)ܯ(0 -ଶ).NowX1 has the unique momentݐ
generating function which, in the continuous case, is given by 
 

,ଵݐ)ܯ 0) = න ݁௧భ௫భ

ஶ

ିஶ
ଵ݂(ݔଵ)݀ݔଵ. 

 
 
Similarly, the unique moment-generating function of X2, in the continuous case, is 
given by 
 

,0)ܯ (ଶݐ = න ݁௧మ௫మ

ஶ

ିஶ
ଶ݂(ݔଶ)݀ݔଶ. 

 
Thus we have  
 

,ଵݐ)ܯ ,0)ܯ(0 (ଶݐ = ቈන ݁௧భ௫భ

ஶ

ିஶ
ଵ݂(ݔଵ)݀ݔଵ ቈන ݁௧మ௫మ

ஶ

ିஶ
ଶ݂(ݔଶ)݀ݔଶ 

 

                         = න න ݁௧భ௫భା௧మ௫మ
ଵ݂(ݔଵ) ଶ݂(ݔଶ)݀ݔଵ݀ݔଶ

ஶ

ିஶ
.

ஶ

ିஶ
 

 
We are given that ݐ)ܯଵ, (ଶݐ = ,ଵݐ)ܯ ,0)ܯ(0   ଶ); soݐ
 
 

,ଵݐ)ܯ (ଶݐ = න න ݁௧భ௫భା௧మ௫మ
ଵ݂(ݔଵ) ଶ݂(ݔଶ)݀ݔଵ݀ݔଶ

ஶ

ିஶ
.

ஶ

ିஶ
 

 
But ݐ)ܯଵ,  ଶ) is the moment-generating function of X1 and X2. Thus alsoݐ
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,ଵݐ)ܯ (ଶݐ = න න ݁௧భ௫భା௧మ௫మ
ଵ݂(ݔଵ) ଶ݂(ݔଶ)݀ݔଵ݀ݔଶ

ஶ

ିஶ
.

ஶ

ିஶ
 

 
The uniqueness of the moment-generating function implies that the two 
distributions of probability that are described by ଵ݂(ݔଵ) ଶ݂(ݔଶ) and ݂(ݔଵ,  ଶ) areݔ
the same. Thus 
 

,ଵݔ)݂ (ଶݔ = ଵ݂(ݔଵ) ଶ݂(ݔଶ). 
 
That is ݐ)ܯଵ, (ଶݐ = ,ଵݐ)ܯ ,0)ܯ(0  ଶ), then X1 and X2 are stochasticallyݐ
independent. 
 
Some Special Distribution 
 
2.5 The Binomial, Trinomial and Multinomial Distribution 
 
If n is a positive integer, that 
 

(ܽ + ܾ) =  ቀ
݊
ݔ

ቁ ܾ௫ܽି௫



௫ୀ

. 

 
 
 
 
 
Consider the function defined by 
 

(ݔ)݂ = ቊቀ
݊
ݔ

ቁ ௫(1 − ݔ    ି௫( = 0,1,2, … , ݊,

݁ݎℎ݁ݓ݁ݏ݈݁                            0
 , 

 
where n is a positive integer 0 < p < 1. Under these conditions it is clear that 
(ݔ)݂ ≥ 0 and that  
 

 (ݔ)݂
௫

=  ቀ
݊
ݔ

ቁ ௫(1 − ି௫(



௫ୀ

 

 
            = [(1 − ( + [ = 1. 

 
That is, f(x) satisfies the conditions of being a p.d.f. of a random variable X of the 
discrete type. A random variable X that has a p.d.f. of the form of f(x) is said to 
have a binomial distribution, and any such f(x) is called a binomial p.d.f. A 
binomial distribution will be denoted by the symbol b(n,p). 
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If we say that X is bቀ5,
ଵ

ଷ
ቁ, we mean that X has the binomial p.d.f. 

(ݔ)݂ = ቐ൬
5
ݔ

൰ ൬
1
3

൰
௫

൬
2
3

൰
ହି௫ᇱ

ݔ     , = 0,1, … ,5,

.݁ݎℎ݁ݓ݁ݏ݈݁                             0

  

 
Example 1. The binomial distribution with p.d.f. 
 

(ݔ)݂ = ൝൬
7
ݔ

൰ ൬
1
2

൰
௫

൬1 −
1
2

൰
ି௫

ݔ      , = 0,1,2, … ,7,

.݁ݎℎ݁ݓ݁ݏ݈݁                                       0

  

 
has the moment generation function 
 

(ݐ)ܯ = ൬
1
2

+
1
2

݁௧൰


, 

 

Has mean ߤ = ݊ = 

ଶ
, and has variance ߪଶ = 1)݊ − ( = 

ସ
. Furthermore, if X 

is the random variable with this distribution, we have 
 

Pr(0 ≤ ܺ ≤ 1) =  (ݔ)݂

ଵ

௫ୀ

=
1

128
+

7
128

=
8

128
 

 
 
 
and 
 

                                                           Pr(ܺ = 5) = ݂(5) 

                                                                               =
7!

5! 2!
൬

1
2

൰
ହ

൬
1
2

൰
ଶ

=
21

128
. 

 
Example 2. If the moment-generating function of a random variable X is 
 

(ݐ)ܯ = ൬
2
3

+
1
3

݁௧൰
ହ

, 

 

Then X has a binomial distribution with n = 5 and p = 
ଵ

ଷ
; that is, the p.d.f. of X is  

 

(ݔ)݂ = ቐ൬
5
ݔ

൰ ൬
1
3

൰
௫

൬
2
3

൰
ହି௫

ݔ      , = 0,1,2, … ,5,

.݁ݎℎ݁ݓ݁ݏ݈݁                                       0

  

 

here ߤ = ݊ =
ହ

ଷ
 and ߪଶ = 1)݊ − ( =

ଵ

ଽ
. 
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Example 3. Consider a sequence of independent repetitions of a random 
experiment with constant probability p of success. Let the random variable Y 
denote the total number of failures in this sequence before the rth success; that is, 
Y + r is equal to the number of trials necessary to produce exactly r successes. 
Here r is a fixed positive integer. To determine the p.d.f. of Y, let y be an element 
of {ݕ; ݕ = 0,1,2, … , }. Then, by the multiplication rule of probabilities,  
Pr (Y = y) = g(y) is equal to the product of the probability 
 

൬
ݕ + ݎ − 1

ݎ − 1
൰ ିଵ(1 −  ௬(

 
of obtaining exactly r - 1 successes in the first y + r - 1 trials and the probability p 
of a success on the (y+r)th trial. Thus the p.d.f. g(y) of Y is given by 
 

(ݕ)݃ = ൝൬
ݕ + ݎ − 1

ݎ − 1
൰ ିଵ(1 − ௬( , ݕ = 0,1,2, . . ,

.݁ݎℎ݁ݓ݁ݏ݈݁                                            0

  

 
A distribution with a p.d.f. of the form g(y) is called a negative binomial 
distribution; and any such g(y) is called a negative binomial p.d.f. The distribution 
derives its name from the fact that g(y) is a general term in the expansion of Pr[l - 
(1 - P)]-r. It is left as an exercise to show that the 
moment-generating function of this distribution is (ݐ)ܯ = [1 − (1 −
  ௧]ି,for݁(
ݐ < − ln(1 −  .If r = 1, then Y has the p.d.f.(
 
 
 
 

(ݕ)݃ = 1) − ௬( ݕ   , = 0,1,2, …, 
 
Zero elsewhere, and the moment-generating function (ݐ)ܯ = [1 −
(1 −  .௧]ିଵ. In the special case r = 1, we say that Y has a geometric distribution݁(
 
2.6 The Poisson Distribution 
 
The series  

1 + ݉ +
݉ଶ

2!
+

݉ଷ

3!
+ ⋯ = 

݉௫

!ݔ

ஶ

௫ୀ

 

 
converges, for all values of m, to em. Consider the function f(x) defined by 
 

(ݔ)݂ = ൝
݉௫݁ି

!ݔ
ݔ       , = 0,1,2, … ,

.݁ݎℎ݁ݓ݁ݏ݈݁                   0
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where m > 0. Since m > 0, then  ݂(ݔ) ≥ 0 and 
 

 (ݔ)݂ = 
݉௫݁ି

!ݔ

ஶ

௫ୀ௫

= ݁ି 
݉௫

!ݔ

ஶ

௫ୀ

= ݁ି݁ = 1; 

 
that is,f(x) satisfies the conditions of being a p.d.f. of a discrete type of random 
variable. A random variable that has a p.d.f. of the form f(x)is said to have a 
Poisson distribution, and any such f(x) is called a Poisson p.d.f. 
 
Example 1. Suppose that X has a Poisson distribution with µ = 2. Then the p.d.f. 
of X is 
 

(ݔ)݂ = ൝
2௫݁ିଶ

!ݔ
ݔ     , = 0,1,2, … ,

.݁ݎℎ݁ݓ݁ݏ݈݁            0

  

 
The variance of this distribution is ߪଶ = ߤ = 2. If we wish to compute Pr(1 ≤ ܺ), 
we have 
 

Pr(1 ≤ ܺ) = 1 − Pr (ܺ = 0) 
 

                                                = 1 − ݂(0) = 1 − ݁ିଶ = 0.865, 
approximately. 
 
Example 2. If the moment-generating function of a random variable X is 
 

(ݐ)ܯ = ݁ସ(ିଵ), 
 
Then X has a poisson distribution µ = 4. Accordingly, by way of example, 
 

Pr(ܺ = 3) =
4ଷ݁ିସ

3!
=

32
3

݁ିସ 

Or 
 

Pr(ܺ = 3) = Pr(ܺ ≤ 3) − Pr(ܺ ≤ 2) = 0.433 − 0.238 = 0.195. 
 
Example 3. Let the probability of exactly one blemish in 1 foot of wire be about 

ଵ

ଵ
 and let the probability of two or more blemishes in that length be, for all 

practical purposes, zero. Let the random variable X be the number of blemishes in 
3000 feet of wire. If we assume the stochastic 
independence of the numbers of blemishes in non overlapping intervals, then the 

postulates of the Poisson process are approximated, with ߣ = ଵ

ଵ
and w = 3000. 

Thus X has an approximate Poisson distribution with mean3000 ቀ ଵ

ଵ
ቁ = 3. For 
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example, the probability that there are exactly five blemishes in 3000 feet of wire 
is 
 

Pr(ܺ = 5) =
3ହ݁ିଷ

5!
 

 
and 
 

Pr(ܺ = 5) = Pr(ܺ ≤ 5) − Pr(ݔ ≤ 4) = 0.101, 
approximately. 
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Unit III 
 

3.1 The Gamma and Chi-Square Distributions 
 
The Gamma function of X is  
 

(ߙ)߁ = න ݕఈିଵ݁ି௬݀ݕ
ஶ


 

 
If α = 1, Clearly 
 

(1)߁ = න ݁ି௬݀ݕ
ஶ


= 1. 

 
If  α  > 1, an integration by parts show that  
 

(ߙ)߁ = ߙ) − 1) න ݕఈିଶ݁ି௬݀ݕ
ஶ


= ߙ) − ߙ)߁(1 − 1). 

 
Accordingly, if α is a positive integer greater than 1, 
 

(ߙ)߁ = ߙ) − ߙ)(1 − 2) … (1)߁(1)(2)(3) = ߙ) − 1)!. 
 
Since (1)߁ = 1, this suggests that we take 0! = 1 , as we have done. 
In the integral that defines (ߙ)߁. Let us introduce a new variable x by writing 
ݕ = ௫

ఉ
, where ߚ > 0. Then 

 

(ߙ)߁ = න ൬
ݔ
ߚ

൰
ఈିଵ

݁ି௫ ఉ⁄ ൬
1
ߚ

൰ ,ݔ݀
ஶ


 

Or equivalently, 
 
 

1 = න
ఈିଵ(ݔ)

ఈߚ(ߙ)߁ ݁ି௫ ఉ⁄ .ݔ݀
ஶ


 

 
Since α > 0, β > 0 and (ߙ)߁ > 0, we see that 
 

(ݔ)݂ = ቐ
ఈିଵ(ݔ)

ఈߚ(ߙ)߁ ݁ି௫ ఉ⁄ ,    0 < ݔ < ∞,

.݁ݎℎ݁ݓ݁ݏ݈݁                        0

  

 
is a p.d.f. of a random variable of the continuous type. 
 
Example 1. Let X be a random variable such that 
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(ܺ)ܧ =
݉ + 3

3!
3,        ݉ = 1,2,3, …. 

 
Then the moment generating function of X is given by the series 
 

(ݐ)ܯ = 1 +
4! 3
3! 1!

ݐ +
5! 3ଶ

3! 2!
ଶݐ +

6! 3ଷ

3! 3!
ଷݐ + ⋯. 

 
This however. is the Maclaurin's series for(1 − ସprovided that −1ି(ݐ3 < ݐ3 < 1. 
Accordingly,X has a gamma distribution with a = 4 and β = 3. 
 

Example 2. If X has the moment-generating function (ݐ)ܯ = (1 − ,଼ି(ݐ2 ݐ >
ଵ

ଶ
. 

Then X is ܺଶ(16). 
 
If the random variable X isܺଶ(ݎ), then, with ܿଵ < ܿଶ, we have 
 

Pr(ܿଵ ≤ ܺ ≤ ܿଶ) = Pr(ܺ ≤ ܿଶ) − Pr(ܺ ≤ ܿଵ), 
 
Since Pr(ܺ = ܿଵ) = 0. To compute such a probability, we need the value of an 
integral like 
 

Pr(X ≤ x) = න
1

Γ(r 2)2୰ ଶ⁄⁄
w୰ ଶିଵ⁄ eି୵ ଶ⁄ dw.

୶


 

 
Example 3. Let X have a gamma distribution with ߙ = ݎ 2⁄ , where r is a positive 

integer, and ߚ > 0. Define the random variable ܻ = ଶ

ఉ
· We seek the p.d.f. of Y. 

Now the distribution function of Y is 
 

(ݕ)ܩ = Pr(ܻ ≤ (ݕ = Pr ൬ݔ ≤
ݕߚ
2

൰. 

 
If ݕ ≤ 0, then G(y) = 0; but if y > 0, then 
 

(ݕ)ܩ = න
1

ݎ)߁ 2⁄ ߚ( ଶ⁄ ݔ ଶିଵ⁄ ݁ି௫ ఉ⁄ .ݔ݀
ఉ௬/ଶ


 

 
Accordingly, the p.d.f. of Y is 
 

(ݕ)݃ = (ݕ)ᇱܩ =
1

ݎ)߁ 2⁄ ߚ( ଶ⁄ ݕߚ) 2)⁄  ଶିଵ⁄ ݁ି௬ ଶ⁄  

 

=
1

ݎ)߁ 2⁄ )2 ଶ⁄ (ݕ) ଶିଵ⁄ ݁ି௬ ଶ⁄  
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If y > 0. That is, Y is ܺଶ(ݎ). 
 
3.2  The Normal Distribution 
 
Consider the integral 
 

ܫ = න ଶݕ)ݔ݁ 2)⁄ ݕ݀
ஶ

ିஶ
. 

 
This integral exists because the integrand is a positive continuous function which 
is bounded by an integrable function; that is, 
 

0 < ଶݕ)ݔ݁ 2)⁄ < exp(−|ݕ| + 1) ,   − ∞ < ݕ < ∞, 
 
and 
 

න exp(−|ݕ| + 1) ݕ݀
ஶ

ିஶ
= 2݁. 

 
To evaluate the integral I, we note that I > 0 and that I2 may be written  
 

ଶܫ = න න exp ቆ
ଶݕ− + ଶݖ

2
ቇ .ݖ݀ݕ݀

ஶ

ିஶ

ஶ

ିஶ
 

 
Example 1. If X has the moment-generating function 
 

(ݐ)ܯ = ݁ଶ௧ାଷଶ௧మ
, 

 
Then X has a normal distribution ߤ = 2, ଶߪ = 64. 
 
Thus, if we say that the random variable X is n(0,1), we mean that X has a normal 
distribution 
with mean ߤ = 0and varianceߪଶ = 1 , so that the p.d.f. of X is 
 

(ݔ)݂ =
1

ߨ2√
݁ି௫మ ଶ⁄ ,   − ∞ < ݔ < ∞ 

 
Moreover, if 
 

(ݐ)ܯ = ݁௧మ ଶ⁄ . 
 
then X is n(0,1). 
 
The graph of  
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(ݔ)݂ =
1

ߨ2√ߪ
exp ቈ−

ݔ) − ଶ(ߤ

ଶߪ2  , −∞ < ݔ < ∞,    

 
is seen (1) to be symmetric about a vertical axis through ݔ =  to have its (2),ߤ

maximum of 
ଵ

ఙ√ଶగ
at ݔ =  and (3) to have the x-axis as a horizontal asymptote. Itߤ

should be verified that (4) there are points of inflection at ݔ = ߤ ±  .ߪ
 
Theorem 1. If the random variable X is n (ߤ, ଶߪ ,(ଶߪ > 0, then the random 
variable  

ܹ = ିఓ

ఙ
is n(0,1). 

 
Proof. 
 
The distribution function G(w) of W is, since 0 <ߪ, 
 

(ݓ)ܩ = Pr ൬
ܺ − ߤ

ߪ
≤ ൰ݓ = Pr(ܺ ≤ ߪݓ +  .(ߤ

That is, 
 

(ݓ)ܩ = න
1

ߨ2√ߪ
exp ቈ−

ݔ) − ଶ(ߤ

ଶߪ2  .ݔ݀
௪ఙାఓ

ିஶ
 

 
 
 
 

If we change the variable of integration by writingݕ =
(௫ିఓ)

ఙ
,  then 

 

(ݓ)ܩ = න
1

ߨ2√
݁ି௬మ ଶ⁄ .ݕ݀

௪

ିஶ
 

 
Accordingly, the p.d.f. g(w) = g’(w) of the continuous – type random variable W 
is 
 

(ݓ)݃ =
1

ߨ2√
݁ି௪మ ଶ⁄ ,   − ∞ < ݓ < ∞. 

 
Thus W is n(0,1), which is the desired result. 
 
Theorem 2. If the random variable X is n (ߤ, ଶߪ ,(ଶߪ > 0,then therandom 

variable ܸ =
(ିఓ)మ

ఙమ  

is X2(1). 
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Proof. 
 

Because V = W2, whereܹ =
ିఓ

ఙ
is n(0,1) the distribution function G(v) of V is, 

forݒ ≥ 0, 
 

(ݒ)ܩ = Pr(ܹଶ ≤ (ݒ = Pr൫−√ݒ ≤ ܹ ≤  .൯ݒ√
 
If we change the variable of integration by writing ݓ = ඥݕ, then 
 

(ݒ)ܩ = න
1

ݕඥߨ2√
݁ି௬ ଶ⁄ 0     ,ݕ݀ ≤ .ݒ

௩


 

 
Hence the p.d.f.݃(ݒ) =  of the continuous – type random variable V is (ݒ)ᇱܩ
 

(ݒ)݃ = ൝
1

ߨ2√
ଵݒ ଶିଵ⁄ షೡ/మ

,    0 < ݒ < ∞,

.݁ݎℎ݁ݓ݁ݏ݈݁                            0

  

 
Since g(v) is a p.d.f. and hence 
 

න ݒ݀(ݒ)݃ = 1
ஶ


 

 

it must be that ߁ ቀ
ଵ

ଶ
ቁ =  .and thus V is X2(1) ߨ√

 
 
 
 
 
3.3 The Bivariate Normal Distribution 
 
Let us investigate the function 
 

,ݔ)݂ (ݕ =
1

ଶඥ1ߪଵߪߨ2 − ଶߩ
݁ି/ଶ, −∞ < ݔ < ∞, −∞ < ݕ < ∞,  

 
where, with ߪଵ > 0, ଶߪ > 0, and −1 < ݕ < 1, 
 

ݍ =
1

1 − ଶߩ ቈ൬
ݔ − ଵߤ

ଵߪ
൰

ଶ

− ߩ2 ൬
ݔ − ଵߤ

ଵߪ
൰ ൬

ݕ − ଶߤ

ଶߪ
൰ + ൬

ݕ − ଶߤ

ଶߪ
൰

ଶ
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At this point we do not know that the constantsߤଵ, ,ଶߤ ଵߪ
ଶ, ଶߪ

ଶܽ݊݀ ߩ represent 
parameters of a distribution. As a matter of fact, we do notknow that݂(ݔ,  has(ݕ
the properties of a joint p.d.f. It will now be shownthat: 
 
(a) f(x, y) is a joint p.d.f. 
(b) X is n(ߤଵ, ଵߪ

ଶ) and Y is n(ߤଶ, ଶߪ
ଶ). 

(c) ߩ is the correlation coefficient of X and Y. 
 
A joint p.d.f. of this form is called a bivariate normal p.d.f., and therandom 
variables X and Yare said to have a bivariate normal distribution. 
 
Example 1. Let us assume that in a certain population of married couples the 
height X1 of the husband and the height X2 of the wife have a bivariatenormal 
distribution with parameters  
 The conditional p.d.f. of .0.6 = ߩଶ =0.2 foot, andߪ= ଵߪ ,ଶ= 5.3 feetߤ ,ଵ = 5.8 feetߤ
X2 , given  X1 = 6.3, is normal with mean5.3 +(0.6)(6.3 -5.8) =5.6 and standard 

deviation (0.2) ඥ(1 − 0.36)  = 0.16. Accordingly, given that the height of the 
husband is 6.3 feet, theprobability that his wife has a height between 5.28 and 
5.92 feet is 
 

                      Pr(5.28 < ܺଶ < ଵݔ|5.92 = 6.3) = ܰ(2) − ܰ(−2) = 0.954. 
 
The moment-generating function of a bivariate normal distributioncan be 
determined as follows. We have 
 

,ଵݐ)ܯ (ଶݐ = න න ݁௧భ௫ା௧మ௬݂(ݔ, ݕ݀ݔ݀(ݕ
ஶ

ିஶ

ஶ

ିஶ
 

 

                               = න ݁௧భ௫
ଵ݂(ݔ)

ஶ

ିஶ
[න ݁௧మ௬݂(ݔ|ݕ)݀ݔ݀[ݕ 

ஶ

ିஶ
 

 
for all real values of t1and t2 . The integral within the brackets is the moment 
generating function of the conditional p.d.f.݂(ݔ|ݕ). Since ݂(ݔ|ݕ)is a normal p.d.f. 

with mean ߤଶ + ߩ ቀఙమ

ఙభ
ቁ ݔ) − ଶߪ ଵ) and varianceߤ

ଶ(1 −  ଶ), thenߩ

න ݁௧మ௬݂(ݔ|ݕ)݀ݕ
ஶ

ିஶ
= exp ቊݐଶ ߤଶ + ߩ 

ଶߪ

ଵߪ
ݔ) − ଵ)൨ߤ +

ଶݐ
ଶߪଶ

ଶ(1 − (ଶߩ

2
ቋ. 

 
Accordingly, M(ݐଵ,  ଶ) can be written in the formݐ
 

exp ቊݐଶߤଶ − ߩ ଶݐ
ଶߪ

ଵߪ
(ଵߤ) +

ଶݐ
ଶߪଶ

ଶ(1 − (ଶߩ

2
ቋ න exp [(ݐଵ

ஶ

ିஶ

+ ଶݐ ߩ ൬
ଶߪ

ଵߪ
൰ [(ݔ) ଵ݂(ݔ)݀ݔ. 
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But ܧ(݁௧) = exp [ߤଵݐ + ఙభ
మ௧

ଶ
] for all the real values of t. Accordingly, if we set 

ݐ = ଵݐ + ߩଶݐ ቀ
ఙమ

ఙభ
ቁ, we see that ݐ)ܯଵ,   ଶ) is given byݐ

 

exp

ە
ۖ
۔

ۖ
ۓ

ଶߤଶݐ − ߩ ଶݐ
ଶߪ

ଵߪ
(ଵߤ) +

ଶݐ
ଶߪଶ

ଶ(1 − (ଶߩ

2
+ ଵߤ ቆݐଵ + ߩଶݐ ൬

ଶߪ

ଵߪ
൰ቇ

+ ଵߪ
ଶ

ቆݐଵ + ߩଶݐ ቀ
ఙమ

ఙభ
ቁቇ

ଶ

2

ൢ
 

 
Or, equivalently, 
 

,ଵݐ)ܯ (ଶݐ = exp ቆߤଵݐଵ + ଶݐଶߤ +
ଵߪ

ଶݐଵ
ଶ + ଶݐଵݐଶߪଵߪߩ2 + ଶߪ

ଶݐଶ
ଶ

2
ቇ. 

 
It is interesting to note that if, in this moment-generating function ݐ)ܯଵ,  ଶ), theݐ
correlation coefficient ߩ is set equal to zero, then 
 
,ଵݐ)ܯ                                             (ଶݐ = ,ଵݐ)ܯ ,0)ܯ(0  .(ଶݐ
 
Thus X and Y are stochastically independent when  ߩ = 0. If, conversely, 
,ଵݐ)ܯ (ଶݐ = ,ଵݐ)ܯ ,0)ܯ(0 ଶ), we have ݁ఘఙభఙమ௧భ௧మݐ = 1. Since each of ߪଵ ܽ݊݀ ߪଶis 
positive, then  ߩ = 0. 
 
Exercise 

1. Prove that 
ଵܥ)ܲ ∩ ଶܥ ∩ ଷܥ ∩ (ସܥ = ଶܥ)ܲ(ଵܥ)ܲ ⁄ଵܥ ଷܥ)ܲ( ଵܥ ∩ ସܥ)ܲ(ଶܥ ଵܥ ∩ ଶܥ ∩ ⁄⁄.(ଷܥ  

2.  A hand of 13 cards is to be dealt at random and without replacement from an 
ordinary deck of playing cards. Find the conditional probability that there are at 
least three kings in the hand relative to the hypothesis that the hand contains at 
least two kings. 

3. A bowl contains 10 chips. Four of the chips are red, 5 are white, and 1 is blue. If 3 
chips are taken at random and without replacement, compute the conditional 
probability that there is 1 chip of each color relative to the hypothesis that thee is 
exactly 1 red chip among the 3. 

4. Let X1 and X2 have the joint p.d.f.݂(ݔଵ, (ଶݔ = ଵݔ + ଶ,   0ݔ < ଵݔ < 1,0 < ଶݔ < 1,
݁ݎℎ݁ݓ݁ݏ݈݁ ݎ݁ݖ . Find the conditional mean and variance of X2 given by                   
ܺଵ = ,ଵݔ 0 < ଵݔ < 1. 
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5. If X1 and X2 are random variables of the discrete type having p.d.f.݂(ݔଵ, (ଶݔ =
௫భାଶ௫మ

ଵ଼
, ,ଵݔ) (ଶݔ = (1,1), (1,2), (2,1), (2,2), .݁ݎℎ݁ݓ݁ݏ݈݁ ݎ݁ݖ  Determine the 

conditional mean and variance X2 given by ܺଵ = ,ଵݔ ଵݔ =   .2 ݎ 1
6. Let ݂(ݔ, (ݕ = 2, 0 < ݔ < 1,0 < ݕ < 1,  be the joint p.d.f. of X ,݁ݎℎ݁ݓ݁ݏ݈݁ ݎ݁ݖ

and Y. Show that the conditional means are, respectively, 
ଵା௫

ଶ
, 0 < ݔ < 1,

ܽ݊݀
௬

ଶ
, 0 < ݕ < 1. Show that the correlation coefficient of X and Y is ߩ = 1/2.  

7. If the random variables X1, X2 have the joint p.d.f.݂(ݔଵ, (ଶݔ = 2݁ି௫భି௫మ , 0 <
,∞ଵݔ 0 < ଶݔ < ∞,  show that X1 and X2 are stochastically ,݁ݎℎ݁ݓ݁ݏ݈݁  ݎ݁ݖ
dependent. 

8. If the moment-generating function of a random variable X is 

(
ଵ

ଷ
+

ଶ

ଷ)
ହ, ݂݅݊ Pr(ܺ =  .(3ݎ 2

9. If X is b(n,p), show that ܧ ቀ



ቁ = ܧ ݀݊ܽ  ቀ



ି
ቁ

ଶ
൨ =

(ଵି)


 

10. Let y be the number of success in n independent repetitions of a random 
experiment having the probability of success p = 2/3. If n = 3 , compute Pr(2<Y); 
if n =5, compute Pr(3≤Y). 

11. Let X be b(2,p) and let Y be b(4,p). If Pr(ܺ ≥ 1) = 5/9, find Pr(ܻ ≥ 1). 
12. If a fair coin tossed at random five independent times, find the conditional 

probability of five heads relative to the hypothesis that are at least four heads. 
13. If the random variable X has a poisson distribution such that Pr(ܺ = 1) =

Pr(ܺ = 2), find Pr(X=4). 
14. Compute the measures of skewness and kurtosis of the poisson distribution with 

mean µ. 
15. If X is X2(5), determine the constants c and d so that Pr(c<X<d) = 0.95 and 

Pr(X<c)=0.025. 
16. Compute the measures of skewness and kurtosis of a gamma distribution with 

parameters α and β. 
 
 
 
DISTRIBUTIONS OF FUNCTIONS OF  
RANDOM VARIABLES 
 
3.4 Sampling Theory 
 
Definition 1. A function of one or more random variables that does not depend 
upon any unknown parameter is called a statistic. 
 
Definition 2. Let X1,X2,…Xn denote n mutually stochastically independent 
random variables, each of which has the same but possibly unknown p.d.f. f(x); 
that is, the probability density functions of X1,X2,…Xn are, respectively, ଵ݂(ݔଵ) =
,(ଵݔ)݂ ଶ݂(ݔଶ) = ,(ଶݔ)݂ … , ݂(ݔ) = (ݔ)݂  so that the joint p.d.f. 
is (ଶݔ)݂(ଵݔ)݂ … .(ݔ)݂  The random variables X1,X2,…Xn are then said to 
constitute a random sample from a distribution that has p.d.f. f(x). 
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Definition 3. Let X1,X2,…Xn denote a random sample of size n from a given 
distribution. The statistic 
 

ܺ =
ܺଵ + ܺଶ + ⋯ + ܺ

݊
= 

ܺ

݊
,



ୀଵ

 

 
is called the mean of the random sample, and the statistic 
 

ܵଶ = 
( ܺ − തܺ)ଶ

݊
= 

ܺ
ଶ

݊
− തܺଶ



ୀଵ



ୀଵ

 

 
is called the variance of the random sample. 
 
Example 1. Let the random variable Y be distributed uniformly over the unit 
interval 0 <y < 1; that is, the distribution function of Y is 
 

(ݕ)ܩ = ൝
ݕ         ,0 ≤ 0,

0          ,ݕ < ݕ < 1,
1,            1 ≤ .ݕ

  

 
 
Suppose that F(x) is a distribution function of the continuous type which is strictly 
increasing when 0 <F(x) < 1. If we define the random variable X by the 
relationship Y = F(X), we now show that X has a distribution which corresponds 
to F(x). If 0 < F(x) < 1, the inequalities  
ܺ ≤ (ܺ)ܨ and ݔ ≤  are equivalent. Thus, with 0 < F(x) < 1, the distribution (ݔ)ܨ
function of 
X is 
 

Pr(ܺ ≤ (ݔ = Pr[ܨ(ܺ) ≤ [(ݔ)ܨ = Pr [ܻ ≤  [(ݔ)ܨ
 
 
 
because Y = F(x). However, Pr(ܻ ≤ (ݕ =  so we have ,(ݕ)ܩ
 

Pr(ܺ ≤ (ݔ = [(ݔ)ܨ]ܩ = 0    ,(ݔ)ܨ < (ݔ)ܨ < 1. 
 
That is the distribution function of X is F(x). 
 
This result permits us to simulate random variables of different types. 
 
3.5 Transformations of Variables of the Discrete Type 
 
An alternative method of finding the distribution of a function of one or more 
random variables is called the change of variable technique. 
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Let X is have the poisson p.d.f. 
 

(ݔ)݂ = ൝
௫݁ିఓߤ

!ݔ
ݔ     , = 0,1,2, … ,

.݁ݎℎ݁ݓ݁ݏ݈݁                  0

  

 
Let A denote the space A = {x; x = 0,1,2, ... },so that d is the set where f(x) > 0. 
Define a new random variable Y by Y = 4X. We wish to find the p.d.f. of Y by 
the change-of-variable 
technique. Let y = 4x. We call y = 4x a transformation from x to y,and we say that 
the transformation maps the space A onto the space B = {y; y = 0, 4, 8, 12, ... }. 
The space B is obtained by transforming each point in d in accordance with y = 
4x. 
 
The p.d.f. g(y) of the discrete type 
 

(ݕ)݃ = Pr(ܻ = (ݕ = Pr ቀܺ =
ݕ
4

ቁ =
௬/ସ݁ିఓߤ

(௬

ସ
)!

ݕ      , = 0,4,8, … ,. 

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁    0

 
Example 1. Let X have the binomial p.d.f. 
 

(ݔ)݂ = ቐ
3!

!ݔ (3 − !(ݔ
൬

2
3

൰
௫

൬
1
3

൰
ଷି௫

ݔ     , = 0,1,2,3,

.݁ݎℎ݁ݓ݁ݏ݈݁                                         0

  

 
We seek the p.d.f. g(y) of the random variable Y = X2. The transformation Y = 
u(x) = x2 maps  A= {x; x = 0, 1, 2, 3} onto B = {y; Y = 0, 1,4, 9}.In general, Y = 
x2 does not define a one-to-one transformation; here, however, it does, for there 
are no negative values of x in  
A = {x; x = 0, 1,2,3}.That is, we have the single-valued inverse function  
ݔ = (ݕ)ݓ = ඥݕ (݊ݐ ඥ−ݕ), and so 
 

(ݕ)݃ = ݂൫ඥݕ൯ = ቐ
3!

൫ඥݕ൯! ൫3 − ඥݕ൯!
൬

2
3

൰
√௬

൬
1
3

൰
ଷି√௬

ݕ    , = 0,1,4,9,

.݁ݎℎ݁ݓ݁ݏ݈݁                        0

  

 
 
Example 2. Let X1 and X2 be two stochastically independent random variables 
that have Poisson distributions with means µ1 and µ2 respectively. 
 
The joint p.d.f. of X1 and X2 is 
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ଵߤ
௫భߤଶ

௫మ݁ିఓభିఓమ

!ଵݔ !ଶݔ
ଵݔ   , = 0,1,2,3, … , ଶݔ = 0,1,2,3, …, 

 
and is zero elsewhere. Thus the space A is the set of points (ݔଵ,  ଶ) where each ofݔ
X1 and X2is a nonnegative integer. We wish to find the p.d.f. of Y1 = X1 + X2. If 
we use the change of variable technique, we need to define a second random 
variable Y2. Because Y2 is of no interest to us, let us choose it in such a way that 
we have a simple one-to-one transformation. For example, take Y2 = X2. Then y1 
= x1 + x2 and y2 = x2 represent one-to-one transformation that maps A onto 
 
                                   B = {(y1,y2); y2 = 0,1,…,y1   and  y1 = 0,1,2,…}. 
 
Note that, if (ݕଵ, then 0 ,ܤ ߳(ଶݕ ≤ ଶݕ <   ଵ.The inverse functions are givenbyݕ
ଵݔ = ଵݕ − ଶݔ ݀݊ܽ ଶݕ =  ଶ.Thus the joint p.d.f. of Y1 and Y2isݕ
 

,ଵݕ)݃ (ଶݕ =
ଵߤ

௬భି௬మߤଶ
௬మ݁ିఓభିఓమ

ଵݕ) − !(ଶݕ !ଶݕ
,ଵݕ)             ,  ,ܤ߳(ଶݕ

 
and is zero elsewhere. Consequently, the marginal p.d.f. of Y1 is given by 
 

݃ଵ(ݕଵ) =  ,ଵݕ)݃ (ଶݕ

௬భ

௬మୀ

 

 

                                                          =
݁ିఓభିఓమ

!ଵݕ


!ଵݕ
ଵݕ) − !(ଶݕ !ଶݕ

௬భ

௬మୀ

ଵߤ
௬భି௬మߤଶ

௬మ  

 

                                                            =
ଵߤ) + ଶ)௬భ݁ିఓభିఓమߤ

!ଵݕ
ଵݕ        , = 0,1,2, …, 

 
And is zero elsewhere. That is, Y1 = X1 + X2 has a poisson distribution with the 
parameter     ߤଵ +  .ଶߤ
 
 
 
3.6 Transformations of Variables of the Continuous Type 
 
Example 1. Let X be a random variable of the continuous type, having p.d.f. 
 

(ݔ)݂ = ቄ 0            ,ݔ2 < ݔ < 1,
.݁ݎℎ݁ݓ݁ݏ݈݁                 0

  

 
Here B is the space {x; 0 <x < I}, where f(x) >0. Define the random variable Y by 
Y = 8X3 and consider the transformation y = 8x2.Under the transformation Y = 8x2, 
the set B is mapped onto the set B={y; 0 <Y < 8},and, moreover, the 
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transformation is one-to-one. For every 0 <a <b < 8, the event a < Y < b will 

occur when, and only when, the event 
ଵ

ଶ
√ܽయ < ݔ <

ଵ

ଶ
√ܾయ

 occurs because there is a 

one to one correspondence between the points of a and b. Thus, 
 

                                           Pr(ܽ < ܻ < ܾ) = Pr (
1
2

√ܽయ < ܺ <
1
2

√ܾ
య

 

 

= න .ݔ݀ݔ2
√య ଶ⁄

√య ଶ⁄
 

 
Let us rewrite this integral by changing the variable of integration from x to y by 

writing ݕ = ݔ ݎ  ଷݔ8 =
ଵ

ଶ
ඥݕయ . Now 

 
ݔ݀
ݕ݀

=
1

ଶݕ6 ଷ⁄ , 

 
And, accordingly we have 
 

Pr(ܽ < ܻ < ܾ) = න 2 ቆ
ඥݕయ

2
ቇ





1

ଶݕ6 ଷ⁄  ݕ݀

 

              = න
1

ଵݕ6 ଷ⁄




 .ݕ݀

 
Since this is true for ever 0 < a< b< 8, the p.d.f. g(y) of Y is the integrand; that is 
 

(ݕ)݃ = ൝
1

ଵݕ6 ଷ⁄ ,     0 < ݕ < 8,

.݁ݎℎ݁ݓ݁ݏ݈݁              0

  

 
Example 2. Let X have the p.d.f. 
 

(ݔ)݂ = ቄ 1,         0 < ݔ < 1,
.݁ݎℎ݁ݓ݁ݏ݈݁              0

  

 
We are to show that the random variable Y = -21n X has a chi-square distribution 
with 2 degrees of freedom. Here the transformation is Y = u(x) =-21n X, so that x 
= w(y) = e-y/2. The. space A is A = {x; 0 <x<1}, which the one-to-one 
transformation Y = -21n X maps onto B = {y; 0 <y<}.The Jacobian of the 
transformation is 
 

ܬ =
ݔ݀
ݕݔ

= (ݕ)ᇱݓ =
1
2

݁ି௬/ଶ . 
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Accordingly, the p.d.f.g(y) of Y = -21n X is 
 

(ݕ)݃ = ݂ ቀ݁ି

మቁ |ܬ| =

1
2

݁ି௬/ଶ,         0 < ݕ < ∞, 

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁ 0

 
a p.d.f. that is chi-square with 2 degree of freedom. This method of finding the 
p.d.f. of a function of one random variable of the continuous type will now be 
extended to functions of two random variables of this type. Again, only functions 
that define a one-to-one transformation will be considered at this time. Let 

ଵܻ = ,ଵݔ)ଵߤ ଶ) and ଶܻݔ = ,ଵݔ)ଶߤ  ଶ) define a one-to-one transformation that mapsݔ
a (two-dimensional) set A in the ݔଵݔଶ-plane onto a (two-dimensional) set A in the 
 ଶ-plane. If we express each of X1 and X2 in terms of Y1 and Y2 we can writeݕଵݕ
ଵݔ = ,ଵݕ)ଵݓ ,(ଶݕ ଶݔ = ,ଵݕ)ଶݓ  ,ଶ).The determinant of order 2ݕ
 

ተተ

ଵݔ߲

ଵݕ߲

ଵݔ߲

ଶݕ߲
ଶݔ߲

ଵݕ߲

ଶݔ߲

ଶݕ߲

ተተ 

 
is called the Jacobian of the transformation and will be denoted by the symbol J. 
 
Example 4. Let the random variable X have the p.d.f. 
 

(ݔ)݂ = ቄ 1,         0 < ݔ < 1,
.݁ݎℎ݁ݓ݁ݏ݈݁              0

  

 
and let X1, X2 denote a random sample from this distribution. The joint p.d.f. of 
X1 and X2 is then 
 

,ଵݔ)߮ (ଶݔ = (ଶݔ)݂(ଵݔ)݂ = 1,    0 < ଵݔ < 1,0 < ଶݔ < 1, 
 

=  .݁ݎℎ݁ݓ݁ݏ݈݁ 0
 
Consider the two random variables Y1 = X1 + X2 and Y2 = X1 + X2, we wish to 
find the joint p.d.f of Y1 and Y2.Here the two-dimensional space A in theݔଵݔଶ -
plane is that of Example 3 of this section. The one-to-one transformationy1 = x1 + 
x2, y2 = x1 + x2 maps A onto the space B of that example. Moreover, the Jacobian 
of that transformation has been shown to be J = -1/2. Thus 
 

,ଵݕ)݃ (ଶݕ = ߮ 
1
2

ଵݕ) + ,(ଶݕ
1
2

ଵݕ) − ଶ)൨ݕ  |ܬ|
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                                                             = ݂ 
1
2

ଵݕ) + ଶ)൨ݕ ݂ 
1
2

ଵݕ) − ଶ)൨ݕ |ܬ|

=
1
2

,ଵݕ)  ,ܤ ߳ (ଶݕ

 
=               ݁ݎℎ݁ݓ݁ݏ݈݁   0

 
Because B is not a product space, the random variables Y1 and Y2 are 
stochastically dependent. The marginal p.d.f. of Y1 is given by 
 

݃ଵ(ݕଵ) = න
1
2

ଶݕ݀

௬భ

ି௬భ

= ଵ,    0ݕ < ଵݕ ≤ 1, 

 

                         = න
1
2

ଶݕ݀

ଶି௬భ

௬భିଶ
= 2 − ଵ,    1ݕ < ଵݕ ≤ 2, 

 
=                 .݁ݎℎ݁ݓ݁ݏ݈݁    0

 
In a similar manner, the marginal p.d.f.݃ଶ(ݕଶ) is given by 
 

݃ଶ(ݕଶ) = න
1
2

ଵݕ݀

௬మାଶ

ି௬మ

= ଶݕ + 1,   − 1 < ଶݕ ≤ 0, 

 

         = න
1
2

ଵݕ݀

ଶି௬మ

௬మ

= 1 − ଶ,   0ݕ < ଶݕ ≤ 1 

 
=                              .݁ݎℎ݁ݓ݁ݏ݈݁   0

 
Example 6. Let Y1 = (X1,-X2) , where X1 and X2 are stochastically independent 
random variables, each being X2(2) . The joint p.d.f. of X1 andX2 is 
 

(ଶݔ)݂(ଵݔ)݂ =
1
4

exp ൬−
ଵݔ + ଶݔ

2
൰ ,    0 < ଵݔ < ∞, 0 < ଶݔ < ∞, 

 
=                                   .݁ݎℎ݁ݓ݁ݏ݈݁       0

 
 

Let Y2 = X2 so that ݕଵ = ଵ

ଶ
ଵݔ) − ,(ଶݔ ଶݕ = ,ଶݔ ଵݔ ݎ = ଵݕ2 + .ଶݕ ଶݔ =  ଶ define aݕ

one-to-one transformation from A={(ݔଵ, ;(ଶݔ 0 < ଵݔ < ∞, 0 < ଶݔ < ∞} onto  
ܤ = ,ଵݕ)} ;(ଶݕ ଵݕ2−  < ଶ ܽ݊݀ 0ݕ < ଶݕ , −∞ < ଵݕ < ∞}. The Jacobian of the 
transformation is  
 

ܬ = ቚ2 1
0 1

ቚ = 2; 
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Hence the joint p.d.f. of Y1 and Y2 is 
 

,ଵݕ)݃ (ଶݕ =
|2|

4
݁ି௬భି௬మ ,     (ݕଵ,  ,ܤ ߳( ଶݕ

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁       0

 
Thus the p.d.f. of Y1 is given by  
 

݃ଵ(ݕଵ) = න
1
2

݁ି௬భି௬మ ݀ݕଶ

ஶ

ିଶ௬భ

=
1
2

݁௬భ ,   − ∞ < ଵݕ ≤ 0, 

 

            = න
1
2

݁ି௬భି௬మ ݀ݕଶ

ஶ


=

1
2

݁ି௬భ ,   0 ≤ ଵݕ < ∞ 

 
or 
 

݃ଵ(ݕଵ) =
1
2

݁ି|௬భ| ,       − ∞ < ଵݕ < ∞. 

 
This p.d.f. is called the double exponential p.d.f. 
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Unit IV 
 
4.1 The β,  t and F Distributions 
 
Let W denote a random variable that is n (0,1); let V denote a random variable 
that is X2(r) ; and let W and V be stochastically independent, Then the joint p.d.f. 
of  W and that of V or 
 

,ݓ)߮ (ݒ =
1

ߨ2√
݁ି௪మ ଶ⁄ 1

)߁ 

ଶ
)2/ଶ

ݒ ଶିଵ⁄ ݁ି௩ ଶ⁄ , −∞ < ݓ < ∞, −∞ < ݎ < ∞,    

 
=                                                                                  .݁ݎℎ݁ݓ݁ݏ݈݁   0

 
Define a new random variable T by writing 
 

ܶ =
ܹ

ඥܸ ⁄ݎ
 

 
 
The change-of-variable technique will be used to obtain the p.d.f. g1(t) of Y. The 
equations 
 

ݐ =
ݓ

ඥݒ ⁄ݎ
ݑ  ݀݊ܽ    =  .ݒ

 
define a one-to-one transformation that maps A = {(w, v); -< w<,0 < v <} 
onto               B = {(t, u); -< t <,0 < u <}, Since ݓ = ݑ√ݐ ⁄ݎ√ ,  v = u, the 
absolute value of the Jacobian of the transformation is |ܬ| = ݑ√ ⁄ݎ√ . Accordingly, 
the joint p.d.f. of T and U =V is given by 
 

,ݐ)݃ (ݑ = ߮ ቆ
ݑ√ݐ

ݎ√
, ቇݑ  |ܬ|

 

                                   =
1

)߁ߨ2√

ଶ
)2/ଶ

ݑ ଶିଵ⁄ exp ቈ
ݑ−
2

ቆ1 +
ଶݐ

ݎ
ቇ

ݑ√

ݎ√
 −  <  ݐ 

< , 0 < > ݑ  , 
 

=                                                                           .݁ݎℎ݁ݓ݁ݏ݈݁    0
 
The marginal p.d.f. of T is then  
 

݃ଵ(ݐ) =  න ,ݐ)݃ ݑ݀(ݑ
ஶ

ିஶ
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= න
1

)߁ݎߨ2√

ଶ
)2/ଶ

ஶ


(ାଵ)ݑ ଶିଵ⁄ exp ቈ

ݑ−
2

ቆ1 +
ଶݐ

ݎ
ቇ  ݑ݀

 

In this integral, let ݖ = 1]ݑ + (௧మ

ଶ
)]/2, and it is seen that 

 

݃ଵ(ݐ) = න
1

߁ݎߨ2√ ቀ

ଶ
ቁ 2

ೝ
మ

ஶ


ቌ

ݖ2

1 + ௧మ



ቍ

(ାଵ) ଶିଵ⁄

݁ି௭ ቌ
2

1 + ௧మ



ቍ  ݖ݀

 

=
ାଵ]߁

ଶ
]

)߁ݎߨ√


ଶ
)

1

ቀ1 + ௧మ


ቁ

(ାଵ) ଶ⁄ ,              − ∞ < ݐ < ∞. 

 
Thus, if W is n (0,1), if V is X2(r), and if W and V are stochastically independent, 
then 
 
 

ܶ =
ܹ

ඥܸ ⁄ݎ
. 

 
 
 
4.2 Extensions of the Change-of-Variable Technique 
 
Consider an integral of the form 
 

න න ,ଵݔ)߮ ,ଶݔ … , ଶݔଵ݀ݔ݀(ݔ … ݔ݀
…

 

 
taken over a subset A of n- dimensional space A. Let 
 

ଵݕ = ,ଵݔ)ଵݑ ,ଶݔ … , ,(ݔ ଶݕ = ,ଵݔ)ଶݑ ,ଶݔ … ,(ݔ … , ݕ = ,ଵݔ)ݑ ,ଶݔ …  ,(ݔ
 
together with the inverse functions 
 

ଵݔ = ,ଵݕ)ଵݓ … . , ,(ݕ ଶݔ = ,ଵݕ)ଶݓ … . , ,(ݕ … , ݔ = ,ଵݕ)ݓ … . ,  (ݕ
 
define a one-to-one transformation that maps A onto B in theݕଵ, ,ଶݕ … . ,  spaceݕ
(and hence maps the subset A of A onto a subset B of B). Let the first partial 
derivatives of the inverse functions be continuous and let the n by n determinant 
(called the Jacobian) 
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ܬ =

ۏ
ێ
ێ
ێ
ۍ
ଵݔ߲

ଵݕ߲

ଵݔ߲

ଶݕ߲
⋯

ଵݔ߲

ݕ߲

⋮ ⋮
ݔ߲

ଵݕ߲

ݔ߲

ଶݕ߲
⋯

ݔ߲

ےݕ߲
ۑ
ۑ
ۑ
ې

 

 
not vanish identically in B. Then 
 

න … න ,ଵݔ)߮ ,ଶݔ … , ଶݔଵ݀ݔ݀(ݔ … ݔ݀


= න … න ߮[


,ଵݕ)ଵݓ … . , ,(ݕ ,ଵݕ)ଶݓ … . , ,(ݕ … , ,ଵݕ)ݓ … . , [(ݕ    

× ଶݕଵ݀ݕ݀|ܬ| …  ݕ݀
 
The joint p.d.f. of the random variables ଵܻ = ,ଵ(ܺଵݑ ܺଶ, … , ܺ), ଶܻ =
,ଶ(ܺଵݑ ܺଶ, … , ܺ), … , ܻ = )ݑ ଵܺ, ܺଶ, … , ܺ) – where the joint p.d.f. of 
ܺଵ, ܺଶ, … , ܺ is ߮(ݔଵ, ,ଶݔ … ,  ) – is given byݔ
 

,ଵݕ)݃ … . , (ݕ = ,ଵݕ)ଵݓ]߮|ܬ| … . , ,(ݕ ,ଵݕ)ଶݓ … . , ,(ݕ … , ,ଵݕ)ݓ … . ,  ,[(ݕ
 
When (ݕଵ, … . ,  .and is zero elsewhere ,ܤ ߳ (ݕ
 
Example 1. Let X1X2  , … , Xk+1 be mutually stochastically independent random 
variables, each having a gamma distribution with β= 1. The joint p.d.f. of these 
variables may be written as 
 

,ଵݔ)߮ ,ଶݔ … , (ାଵݔ = ෑ
1

(ଵߙ)߁
ݔ

ఈିଵ݁ି௫ ,    0 < ݔ < ∞,

ାଵ

ୀଵ

 

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁       0

 
Let 
 

ܻ =
ܺ

ܺଵ + ܺଶ + ⋯ + ܺାଵ
,    ݅ = 1,2, … , ݇, 

 
and Yk+1 = ܺଵ + ܺଶ + ⋯ + ܺାଵ  denote k + 1 new random variables. The 
associated transformation maps A ={(ݔଵ, ,ଶݔ … ,  ାଵ); 0<xi<, i=1,…,k+1} ontoݔ
the space  
B = {(ݕଵ, … . , ݕ , ଵݕ ,ାଵ); 0<yi, i=1,…,kݕ + ⋯ + ݕ < 1,0 < ାଵݕ < ∞ }. 
 
The single-valued inverse functions are ݔଵ = ,ାଵݕଵݕ … , ݔ =  ,ାଵݕݕ
ାଵݔ = ାଵ(1ݕ − ଵݕ − ⋯ −   ), so that the Jacobian isݕ
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ܬ = ተ
ተ

…          ାଵ       0ݕ ଵݕ                                  0         
ାଵݕ           0   … ଶݕ                                  0          

⋮⋮⋮⋮
        0           0        … ݕାଵݕ

ାଵݕ−  − ାଵݕ …    − ାଵ(1ݕ − ଵݕ − ⋯ −   (ݕ

ተ
ተ = ାଵݕ

 . 

 
Hence the joint p.d.f. of ଵܻ, … . , ܻ , ܻାଵis given by 
 

ାଵݕ
ఈభା⋯ାఈೖశభିଵݕଵ

ఈభିଵ ݕ …
ఈೖିଵ(1 − ଵݕ − ⋯ − )ఈೖశభିଵ݁ି௬ೖశభݕ

(ଵߙ)߁ … (ାଵߙ)߁(ߙ)߁ 
, 

 
provided that (ݕଵ, … . , ݕ , (ାଵݕ  ∈  and is equal to zero elsewhere. The p.d.f. of ܤ

ଵܻ, … . , ܻ is  
 

,ଵݕ)݃               … . , (ݕ

=
ଵߙ)߁ + ⋯ + (ାଵߙ
(ଵߙ)߁ … (ାଵߙ)߁ 

ଵݕ
ఈభିଵ ݕ …

ఈೖିଵ(1 − ଵݕ − ⋯ −  ,)ఈೖశభିଵݕ

 
When 0 < ݕ , ݅ = 1, … , ݇, ଵݕ  + ⋯ . ݕ+ < 1 , while the function g is equal to 
zero elsewhere. Random variables Y1,…,Yk that have a joint p.d.f. of this form are 
said to have a Dirichlet distribution with parameters a1, ... ,ak, ak+1and any such 
,ଵݕ)݃ … . ,  )is called a Dirichlet p.d.f.It is seen, in the special case of k = 1, thatݕ
the Dirichlet p.d.f. becomes a beta p.d.f. 
Moreover, it is also clear from the joint p.d.f. of Y1,…,Yk,Yk+1 that Yk+1has a 
gamma distribution with parametersߙଵ + ⋯ + ାଵߙ and β = 1 and that Yk+1 is 
stochastically independent of Y1,…,Yk. 
 
Now, let X have the Cauchy p.d.f. 
 

(ݔ)݂ =
1

1)ߨ + (ଶݔ
,    − ∞ < ݔ < ∞, 

and let Y = X2. We seek the p.d.f.g(y) of Y. Consider the transformation y = 
x2.This transformation maps the space of X, d = {x; -<x <}, onto B= {y; 0 <Y 
<}, However, the transformation is not one-to-one. To eachݕ ∈ ܤ , with the 
exception of y = 0, there correspond two points ݔ ∈  For example, if y= 4, we .ܣ
may have either x = 2 or x = - 2. In such an instance, we represent d as the union 
of two disjoint sets A1 and A2 such that Y = x2 defines a one-to-one transformation 
that maps each of A1 and A2 onto B. If we take A1 to be {x; -<x <0} and A2 to 
be {x; 0 <x <}, we see that A1 is mapped onto {y; 0 <Y <}, where as A2 is 
mapped onto  {y; 0 <Y <}, and these sets are not the same. 
 
Take A1 = {x; -<x <0}and A2 = {x; 0 <x <}. Thus y = x2 with the inverse 
ݔ = −ඥݕ, maps A1 onto B = {y; 0 <Y <} and the transformation is one-to-one. 

Moreover, the transformation y = x2 with the inverse ݔ = −ඥݕ, maps A2 onto B = 
{y; 0 <Y <} and the transformation is one-to-one. 
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Consider the probability Pr (Y ∈ B), where B  ܤ. Let ܣଷ = ൛ݔ; ݔ = −ඥݕ, ݕ ∈
ସܣ ଵand letܣൟܤ = ൛ݔ; ݔ = ඥݕ, ݕ ∈  ଶ. Thus we haveܣൟܤ
 

Pr(ܻ ∈ (ܤ = Pr(ܺ ∈ (ଷܣ + Pr(ܺ ∈  (ସܣ
 

                   = න ݔ݀(ݔ)݂
య

+ න ݔ݀(ݔ)݂
ర

. 

 
In the first of these integrals, letݔ = −ඥݕ. Thus the Jacobian, say J1, is −1/2ඥݕ; 

moreover, the set A3 is mapped onto B. In the second integral letݔ = ඥݕ. Thus the 

Jacobian, say J2 is1/2ඥݕ moreover, the set A4 is also mapped onto B. Finally, 
 

Pr(ܻ ∈ (ܤ = න ݂൫−ඥݕ൯ ቤ−
1

2ඥݕ
ቤ ݕ݀


+ න ݂൫ඥݕ൯

1

2ඥݕ
ݕ݀


 

 

= න ൣ݂൫−ඥݕ൯ + ݂൫ඥݕ൯൧
1

2ඥݕ
.ݕ݀


 

 
Hence the p.d.f. of Y is given by 
 

(ݕ)݃ =
1

2ඥݕ
ൣ݂൫−ඥݕ൯ + ݂൫ඥݕ൯൧,     ݕ ∈  .ܤ

 
With f (x) the Cauchy p.d.f. we have 
 

(ݕ)݃ =
1

1)ߨ + ݕඥ(ݕ
,    0 < ݕ < ∞, 

=                 .݁ݎℎ݁ݓ݁ݏ݈݁  0
Let ߮(ݔଵ, ,ଶݔ … , ,),be the joint p.d.f. of ܺଵݔ ܺଶ, … , ܺ,which are random variables 
of the continuous type. Let A be the n-dimensional space where 
ଵݕ = ,ଵݔ)ଵߤ  ,ଶݔ … , ,(ݔ … , ݕ = ,ଵݔ)ߤ ,ଶݔ … ,  )which maps A onto B on theݔ
,ଵݕ … . , ݕ  space. To each point of A there will correspond, of course, but one 
point in B; but to a point in B there may correspond more than one point in A. 
That is, the transformation may not be one-to-one. Suppose, however, that we can 
represent A as the union of a finite number, say k, of mutually disjoint sets A1,A2 
,…, Ak so that 
 

ଵݕ = ,ଵݔ)ଵߤ  ,ଶݔ … , ,(ݔ ݕ     ,… = ,ଵݔ)ߤ ,ଶݔ … ,  (ݔ
 
Define a one-to-one transformation of each Ai onto B. Thus, to each point in B 
there will correspond exactly one point in each A1,A2 ,…, Ak. Let 
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ଵݔ = ,ଵݕ)ଵݓ … . , ,(ݕ ଶݔ = ,ଵݕ)ଶݓ … . , ,(ݕ … , ݔ = ,ଵݕ)ݓ … . , ,(ݕ ݅

= 1,2, … , ݇. 
 
denote the k groups of n inverse functions, one group for each of these k 
transformations. Let the first partial derivatives be continuous and let each 
 

ܬ =

ተ

ተ

ଵݓ߲

ଵݕ߲

ଵݓ߲

ଶݕ߲
…    

ଵݓ߲

ݕ߲
ଶݓ߲

ଵݕ߲

ଶݓ߲

ଶݕ߲
 …    

ଶݓ߲

ݕ߲
⋮            ⋮                    ⋮
ݓ߲

ଵݕ߲

ݓ߲

ଶݕ߲
…    

ݓ߲

ݕ߲

ተ

ተ

,    ݅ = 1,2, … , ݇, 

 
 
be not identically equal to zero in B. From a consideration of the probability of 
the union of k mutually exclusive events and by applying the change of variable 
technique to the probability of each of these events, it can be seen that the joint 
p.d.f. of ଵܻ = ,ଵ(ܺଵݑ ܺଶ, … , ܺ), … , ܻ = ,(ܺଵݑ ܺଶ, … , ܺ), is given by 
 

,ଵݕ)݃ … . , (ݕ = |ܬ|߮[ݓଵ(ݕଵ, … . , ,(ݕ … , ,ଵݕ)ݓ … . , [(ݕ



ୀଵ

, 

 
provided that (ݕଵ, … . , (ݕ ∈  ,and equals to zero elsewhere. The p.d.f. of any Yi ,ܤ
say Y1, is then 
 

݃ଵ(ݕଵ) = න … න ,ଵݕ)݃ … . , ݀(ݕ
ஶ

ିஶ

ஶ

ିஶ
ଶݕ … ݕ݀ . 

 
Example 2. To illustrate the result just obtained, takenn = 2and letX1, X2denote a 
random sample of size 2 from a distribution that isn(0, 1).The joint p.d.f. of X1 
and X2 is 
 

,ଵݔ)݂ (ଶݔ =
1

ߨ2
exp ቆ−

ଵݔ
ଶ + ଶݔ

ଶ

2
ቇ , −∞ < ଵݔ < ∞, −∞ < ଶݔ < ∞. 

Let Y1 denote the mean and let Y2 denote twice the variance of the random 
sample. The associated transformation is  
 

ଵݕ =
ଵݔ + ଶݔ

2
, 

 

ଵݕ =
ଵݔ) − ଶ)ଶݔ

2
. 
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The transformation maps ܣ = ,ଵݔ)} ;(ଶݔ  −∞ < ଵݔ < ∞, −∞ < ଶݔ < ∞} onto  
ܤ = ,ଵݕ)} ;(ଶݕ −∞ < ଵݕ < ∞, 0 ≤ ଶݕ < ∞}. But the transformation is not one-to-
one because, to each point in B, exclusive of points where ݕଶ = 0 , there 
correspond two points in A. In fact, the two groups of inverse functions are 
 

ଵݔ = ଵݕ − ට
ଶݕ

2
ଶݔ = ଵݕ + ට

ଶݕ

2
, 

 
And  
 

ଵݔ = ଵݕ + ට
ଶݕ

2
ଶݔ = ଵݕ − ට

ଶݕ

2
.           

 
Moreover the set A cannot be represented as the union of two disjoint sets, each 
of which under our transformation maps onto B. Our difficulty is caused by those 
points of A that lie on the line whose equation is ݔଶ =  ଵ.At each of these pointsݔ
we haveݕଶ = 0. However, we can define ݂(ݔଵ,  ଶ)to be zero at each point whereݔ
ଵݔ  =  ଶ.We can do this without altering the distribution of probability, becauseݔ
the probability measure of this set is zero. Thus we have a new 
ܣ = ,ଵݔ)} ;(ଶݔ  −∞ < ଵݔ < ∞, −∞ < ଶݔ < ∞, ଵݔ  ≠  ଶ}. This space is the unionݔ
of the two disjoint sets ܣଵ = ,ଵݔ)} ;(ଶݔ ଶݔ > ଶܣ ݀݊ܽ{ଵݔ = ,ଵݔ)} ;(ଶݔ ଶݔ <  .{ଵݔ
Moreover, our transformation now define a one-to-one transformation of each Aj, 
j = 1,2, onto the new ܤ = ,ଵݕ)} ;(ଶݕ −∞ < ଵݕ < ∞, 0 ≤ ଶݕ < ∞}. We can now 
find the joint p.d.f. say ݃(ݕଵ,  ଶ), of the mean Y1 and twice the variance Y2 of ourݕ
random sample. 
 

|ଵܬ| = |ଶܬ| =
1

ඥ2ݕଶ

. 

 
Thus 
 

,ଵݕ)݃ (ଶݕ

=
1

ߨ2
exp

ۏ
ێ
ێ
ێ
ۍ

−
൬ݕଵ − ට

௬మ

ଶ
൰

ଶ

2
−

൬ݕଵ + ට
௬మ

ଶ
൰

ଶ

2

ے
ۑ
ۑ
ۑ
ې

1

ඥ2ݕଶ

+
1

ߨ2
exp

ۏ
ێ
ێ
ێ
ۍ

−
൬ݕଵ + ට

௬మ

ଶ
൰

ଶ

2
−

൬ݕଵ − ට
௬మ

ଶ
൰

ଶ

2

ے
ۑ
ۑ
ۑ
ې

1

ඥ2ݕଶ
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                                  = ඨ
2

ߨ2
݁ି௬భ

మ 1

߁2√ ቀଵ

ଶ
ቁ

ଶݕ

భ
మ

ିଵ
݁ି

మ
మ , −∞ < ଵݕ < ∞, 0 ≤ ଶݕ < ∞.   

 
The mean Y1 of our random sample is n(0,1/2); Y2, which is twice the variance of 
our sample is X2(1); and the two are stochastically independent. Thus the mean 
and the variance of our sample are stochastically independent. 
 
4.3 The Moment-Generating-Function Technique 
 
Let ߮(ݔଵ, ,ଶݔ … , ,) denote the joint p.d.f. of the n random variables ܺଵݔ ܺଶ, … , ܺ. 
These random variables may or may not be the items of a random sample from 
some distribution that has a given p.d.f. f(x). Let ଵܻ = ,ଵ(ܺଵݑ ܺଶ, … , ܺ). We seek 
 the p.d.f. of the random variable Y1. Consider the moment-generating ,(ଵݕ)݃
function of Y1. If it exists, it is given by 
 

(ݐ)ܯ = (௧భ݁)ܧ = න ݁௧௬భ݃(ݕଵ)݀ݕଵ

ஶ

ିஶ
 

 
in the continuous case. 
 
Example 1. Let the stochastically independent random variables X1and X2 have 
the same p.d.f. 
 

(ݔ)݂ =
ݔ
6

ݔ     , = 1,2,3, 

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁ 0

 
That is the p.d.f. of X1 is ݂(ݔଵ) and that of X2 is ݂(ݔଶ); and so that the joint p.d.f. 
of X1 and X2 is  
 

(ଶݔ)݂(ଵݔ)݂ =
ଶݔଵݔ

36
ଵݔ   , = 1,2,3, ଶݔ = 1,2,3, 

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁         0

 
A probability, such as Pr(ܺଵ = 2, ܺଶ = 3), can be seen immediately to be 
(ଶ)(ଷ)

ଷ
= ଵ


. However, consider a probability such as Pr( ଵܺ + ܺଶ = 3), the 

computation can be made by first observing that the event ܺଵ + ܺଶ = 3 is the 
union exclusive of the events with probability zero of the non mutually exclusive 
events (ܺଵ = 1, ܺଶ = 2) and (ܺଵ = 2, ܺଶ = 1). Thus 
 

Pr(ܺଵ + ܺଶ = 3) = ଵܺ)ݎܲ = 1, ܺଶ = 2) + ଵܺ)ݎܲ = 2, ܺଶ = 1) 
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=
(1)(2)

36
+

(2)(1)
36

=
4

36
. 

 
 
More generally, let y represent any of the numbers 2,3,4,5,6. The probability of 
each of the events X1+ X2= y, y= 2,3,4,5,6, can be computed as in the case y = 3. 
Let ݃(ݕ) = Pr(ܺଵ + ܺଶ =  Then the table .(ݕ
 

   ݕ
2 

  
3 

  
4 

  
5 

  
6 

1 (ݕ)݃
36

 
4

36
 

10
36

 
12
36

 9
36

 

 
Gives the values of g(y) for y = 2,3,4,5,6. For all the values of u, g(y) = 0. Now, 
define a new random variable Y of ܺଶ(ݎଵ),, and then we have to calculate the 
p.d.f. g(y) of this random variable Y. We shall now solve the same problem and 
by the moment generating function technique. 
 
Now the moment generating function of Y is 
 

(ݐ)ܯ =  (௧(భାమ)݁)ܧ
 

= ௧భ݁௧మ݁)ܧ ) 
 

       = ௧భ݁)ܧ  ,(௧మ݁)ܧ(
 
Since X1 and X2 are stochastically independent. 
 
Theorem 1. Letܺଵ, ܺଶ, … , ܺ be mutually stochastically independentrandom 
variables having, respectively, the normal 
distributions ݊(ߤଵ, ଵߪ

ଶ), ,ଶߤ)݊ ଶߪ
ଶ), … ߤ)݊ ݀݊ܽ , ߪ

ଶ). The random variable 
ܻ = ݇ଵܺଵ + ݇ଶܺଶ + ⋯ + ݇ܺ, where ݇ଵ, ݇ଶ, … , ݇ are real constants, is 
normally distributed with mean ݇ଵߤଵ + ⋯ + ݇ߤ and variance ݇ଵ

ଶߪଵ
ଶ + ⋯ +

݇
ଶߪ

ଶ. 
 
Proof. 
 
Since because ܺଵ, ܺଶ, … , ܺ are mutually stochastically independent the moment 
generating function of Y is given by 
 
 
 

(ݐ)ܯ = ଵܺଵ݇)ݐ]exp}ܧ + ݇ଶܺଶ + ⋯ + ݇ܺ)]} 
 

 = ௧భభ݁)ܧ ௧మమ݁)ܧ( ) …  .(௧݁)ܧ
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Now 
 

(௧భ݁)ܧ = exp ቆߤଵݐ +
ଵߪ

ଶݐଶ

2
ቇ, 

 
for all real t, i = 1,2,…,n. Hence we have  
 

(௧భభ݁)ܧ = exp ቈߤ(݇ݐ) +
ߪ

ଶ(݇ݐ)ଶ

2
. 

 
That is, the moment generating function of Y is 
 

(ݐ)ܯ = ෑ exp ቈߤ(݇ݐ) +
ߪ

ଶ(݇ݐ)ଶ

2




ୀଵ

 

 

                     = exp ൭ ݇ߤ



ଵ

൱ ݐ +
(∑ ݇

ଶߪ
ଶ

ଵ ଶݐ(

2
൩. 

 
But this is the moment generating function of a distribution that is 
݊(∑ ݇ߤ


ଵ , ∑ ݇

ଶߪ
ଶ

ଵ ). Hence the proof. 
 
Theorem 2. Let ܺଵ, ܺଶ, … , ܺ be mutually stochastically independent variables 
that have, respectively, the chi-square distributions 
ܺଶ(ݎଵ), ܺଶ(ݎଶ), … , ܽ݊݀ ܺଶ(ݎ).Then the random variableܻ = ܺଵ + ܺଶ + ⋯ + ܺ 
has a chi-square distribution with r1 + …+ rn degrees of freedom; that is, Y is 
X2(r1 + ... + rn). 
 
Proof. 
 
The moment generating function of Y is 
 

(ݐ)ܯ = ଵܺ)ݐ]exp}ܧ + ܺଶ + ⋯ + ܺ)]} 
 

   = (௧మ݁)ܧ(௧భ݁)ܧ …  (௧݁)ܧ
 
Because ܺଵ, ܺଶ, … , ܺ are mutually stochastically independent since   
 

(௧భ݁)ܧ = (1 − ି(ݐ2 ଶ⁄ , ݐ <
1
2

, ݅ = 1,2, … , ݊, 

 
 
we have 
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(ݐ)ܯ = (1 − (భାమା⋯ା)ି(ݐ2 ଶ⁄ ݐ    , <
1
2

.  

 
But this is the moment generating function of a distribution that X2(r1 + ... + rn). 
Accordingly, Y has this chi-square distribution. 
 
Also, let ܺଵ, ܺଶ, … , ܺbe a random sample of size n from a distribution that is 

,ߤ)݊ (ଶߪ . Thus, each of the random variable 
(ିఓ)మ

ఙమ , ݅ = 1,2, … , ݊,  is X2(1). 

Moreover, these random variables are mutually stochastically independent. By the 

Theorem 2, the random variable                                ܻ = ∑ ቂ
(ିఓ)మ

ఙమ ቃ , ݅ =
ଵ

1,2, … , ݊ is X2(n). 
 
 4.4  The Distributions of ࢄഥ and ࡿ/࣌ 
 
Let ܺଵ, ܺଶ, … , ܺ denote a random sample of size ݊ ≥ 2 from a distribution that is 
,ߤ)݊  ଶ). Here we discuss about mean and the variance of this random sampleߪ
that is the distribution of the two statistics 
 

തܺ =  ܺ

݊
ܽ݊݀   ܵଶ = 

(ܺ − തܺ)ଶ

݊
.



ଵ



ଵ

 

 
The problem of the distribution of തܺ, the mean of the sample is solved by the use 
of Theorem 1 of Section 3.6. We have here, in the notation of the statement of 
that theorem ߤଵ = ଶߤ = ⋯ ߤ = ,ߤ ଵߪ

ଶ = ଶߪ
ଶ = ⋯ ߪ

ଶ = ଶ ܽ݊݀ ݇ଵߪ  = ݇ଶ =
⋯ ݇ = ଵ


. Accordingly Y =X has a normal distribution with mean and variance 

given by 
 

 ൬
1
݊

൰ߤ = ߤ



ଵ

,     [൬
1
݊

൰
ଶ

ଶߪ =
ଶߪ

݊
,



ଵ

 

 
respectively that is X is ݊(ߤ,  .(݊/ଶߪ
 
Example 1. Let തܺ be the mean of a random sample of size 25 from a distribution 
that is n(75, 100). Thus തܺ is n(75, 4). Then, for instance, 
 

Pr(1 < തܺ < 79) = ܰ ൬
79 − 75

2
൰ − ܰ ൬

71 − 75
2

൰ 

 
= ܰ(2) − ܰ(−2) = 0.954. 

 
We now take up the problem of the distribution S2 the variance of the random 
sample ܺଵ, ܺଶ, … , ܺ  from a distribution that is ݊(ߤ, .(ଶߪ  Consider the joint 
distribution ଵܻ = ܺଵ, ଶܻ = ܺଶ, … , ܻ = ܺ. The corresponding transformation 
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ଵݔ = ଵݕ݊ − ଶݕ − ⋯ −  ݕ
 

ଶݔ =  ଶݕ
⋮          ⋮ 

 
ݔ =  ݕ

 
has Jacobian n. Since 
 

(ݔ − ଶ(ߤ = (ݔ − ݔ̅ + ݔ̅ − ଶ(ߤ



ଵ



ଵ

 

 

                                  = (ݔ − ଶ(ݔ̅ + ݔ̅)݊ − ଶ(ߤ



ଵ

 

 
because 2(̅ݔ − (ߤ ∑ ݔ) − (ݔ̅ = 0

ଵ , the joint p.d.f. of  ܺଵ, ܺଶ, … , ܺ can be written 
 

൬
1

ߪߨ2√
൰



exp ቈ−
ݔ)∑ − ଶ(ݔ̅

ଶߪ2 −
ݔ̅)݊ − ଶ(ߤ

ଶߪ2 , 

 
where  ̅ݔ  represent ( ଵݔ + ଶݔ + ⋯ + ݀݊ܽ ݊/(ݔ − ∞ < ݔ < ∞, ݅ = 1,2, … , ݊. 
Accordingly, with ݕଵ = ,we find that the joint p.d.f. of  ଵܻ ,ݔ̅ ଶܻ, … , ܻ is  
 

݊ ൬
1

ߪߨ2√
൰



exp ቈ−
ଵݕ݊) − ଶݕ − ⋯ − ݕ − ଵ)ଶݕ

ଶߪ2 −
∑ ݕ) − ଵ)ଶݕ

ଶ

ଶߪ2 −
ଵݕ)݊ − ଶ(ߤ

ଶߪ2 , 

 
-<yi<, i = 1,2,…,n. The quotient of this joint p.d.f. and the p.d.f. 
 

√݊

ߪߨ2√
exp ቈ−

ଵݕ)݊ − ଶ(ߤ

ଶߪ2  

 
of Y1 = തܺis the conditional p.d.f. ଶܻ, … , ܻ , given ଵܻ =  ,ଵݕ
 

√݊ ൬
1

ߪߨ2√
൰

ିଵ

exp ቀ−
ݍ

 ,ଶቁߪ2

 
where  ݍ = ଵݕ݊) − ଶݕ − ⋯ − ݕ − ଵ)ଶݕ + ∑ ݕ) − ଵ)ଶݕ

ଶ .  Since this is a joint 
p.d.f. it must be, for all σ > 0, that 
 

න … න √݊ ൬
1

ߪߨ2√
൰

ିଵ

exp ቀ−
ݍ

ଶቁߪ2
ஶ

ିஶ

ஶ

ିஶ
ଶݕ݀ … ݕ݀ = 1. 
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Now consider 
 

݊ܵଶ = ( ܺ − തܺ)ଶ



ଵ

 

 

         = ଵݕ݊) − ଶݕ − ⋯ − ݕ − ଵ)ଶݕ + ( ܻ − ଵܻ)ଶ



ଶ

= ܳ. 

 

The conditional moment generating function of 
ௌమ

ఙమ =
ொ

ఙమ, given Y1 = y1, is 

 

൫݁௧ொܧ  ఙమ⁄ หݕଵ൯ = න … න √݊ ൬
1

ߪߨ2√
൰

ିଵ

exp ൬−
(1 − ݍ(ݐ2

ଶߪ2 ൰
ஶ

ିஶ

ஶ

ିஶ
ଶݕ݀ …  ݕ݀

 
                     

= ൬
1

1 − ݐ2
൰

(ିଵ) ଶ⁄

න … න √݊ 
1 − ݐ2
ଶߪߨ2 ൨

(ିଵ) ଶ⁄ஶ

ିஶ

ஶ

ିஶ

× exp ቈቆ−
(1 − ݍ(ݐ2

ଶߪ2 ቇ ଶݕ݀ …  ݕ݀

 

where 0 < 1 − ,ݐ2 ݐ ݎ <
ଵ

ଶ
. However, this integral is exactly the same that of the 

conditional p.d.f. of  ଶܻ, … , ܻ, given ଵܻ = ଵݕ  with ߪଶ  replaced by 
ఙమ

ଵିଶ௧
> 0, and 

thus must equal 1. Hence the conditional moment generating functions of 
ௌమ

ఙమ , 

given ଵܻ = ଵor equivalently തܺݕ =  is ,ݔ̅
 

൫݁௧ௌమܧ ఙమ⁄ ห̅ݔ൯ = (1 − (ିଵ)ି(ݐ2 ଶ⁄ ݐ    , <
1
2

. 

 

That is, the conditional distribution of 
ௌమ

ఙమ , given by തܺ =  ,is X2(n-1).Moreover ,ݔ̅

since it is clear that this conditional distribution does not depend, upon തܺ,  and ݔ̅
ௌమ

ఙమ  must be stochastically independent or equivalently  തܺ ܽ݊݀ ܵଶ  are 

stochastically independent. 
 
To summarize we have established. In this section, three important properties 
തܺ ܽ݊݀ ܵଶ when the sample arises from a distribution which is ݊(ߤ,  :(ଶߪ
 

a) തܺ ݅ݏ ݊ ቀߤ, ఙమ


ቁ. 

b) 
ௌమ

ఙమ is X2(n – 1). 
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c) തܺ ܽ݊݀ ܵଶ are stochastically independent. 
 
 
4.5 Expectation Of Functions Of Random Variables 
 
Theorem 1. Let ܺଵ, ܺଶ, … , ܺ  denote random variables that have means 
,ଵߤ ,ଶߤ … , ߤ  and variances ߪଵ

ଶ, ଶߪ
ଶ, … , ߪ

ଶ . Let ߩ, ݅ ≠ ݆,  denote the correlation 
coefficient of Xi and Xj and let   ݇ଵ, ݇ଶ, … , ݇ denote real constants. The mean and 
the variance of the linear function 
 

ܻ =  ݇ ܺ



ଵ

, 

 
are respectively, 
 

ߤ =  ݇ߤ



ଵ

 

 
and  
 

ߪ
ଶ =  ݇

ଶߪ
ଶ



ଵ

+ 2   ݇ ݇ߩߪߪ

    ழ

. 

 
Corollary: Let ଵܺ, ܺଶ, … , ܺdenote the items of a random sample of the variance 
of ܻ = ∑ ݇ ܺ


ଵ  are respectively ߤ = (∑ ݇)ߤ

ଵ  and ߪ
ଶ = (∑ ݇

ଶ
ଵ  .ଶߪ(

 

Example : Let തܺ = ∑ 



ଵ  denote the mean of a random sample of size n from a 

distribution that has mean µ and the variance σ2. In accordance, with the 

corollary, we have ߤ௫̅ = ߤ ∑ ቀ
ଵ


ቁ = ߤ

ଵ  and ߪ௫̅
ଶ = ଶߪ ∑ ቀ

ଵ


ቁ

ଶ

ଵ =

ఙమ


. We have seen, 

in this section, that if our sample is from a distribution ݊(ߤ, (ଶߪ , then തܺ  is 

,ߤ)݊ ௫̅ߤ ଶ/݊). It is interesting thatߪ = ௫̅ߪ and ߤ
ଶ =

ఙమ


 whether the sample is or is 

not from a normal distribution. 
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Unit V 
 
5.1 Limiting Distribution 
 
If തܺ is the mean of a random sample ܺଵ, ܺଶ, … , ܺ from a distribution that has the 
p.d.f.  
 

(ݔ)݂ = 1,     0 < ݔ < 1, 
 

     =  .݁ݎℎ݁ݓ݁ݏ݈݁ 0
 
 
The moment generating function of തܺ is given by [M(t/n)]n, where here 
 

(ݐ)ܯ                                                 = න ݁௧௫
ଵ


ݔ݀ =

݁௧ − 1
ݐ

ݐ     , ≠ 0, 

 
= ݐ            ,1 = 0.                             

 
Hence 
 

൫݁௧ത൯ܧ = ቌ
݁


 − 1

௧



ቍ



ݐ      , ≠ 0, 

 
= ݐ          ,1 = 0. 

 
For example, we shall write 
  

(ݔ̅)ܨ = න
1

ටଵ


ߨ2√

௫̅

ିஶ
݁ି௪మ ଶ⁄  ݓ݀

 
for the distribution function of the mean തܺ of the random sample of the size n 
from a normal distribution with mean 0 and variance 1. 
 
Definition: Let the distribution function ܨ(ݕ) of the random variable Yn depend 
upon n, a positive integer. If F(y) is a distribution and if lim→ஶ (ݕ)ܨ =  for (ݕ)ܨ
every point y at which F(y) is continuous, then the random variable Yn is said to 
have a limiting distribution with distribution function F(y).   
 
Example 1. Let Yn denote the  nth order statistic of a random sample ܺଵ, ܺଶ, … , ܺ 
from a distribution having p.d.f. 
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(ݔ)݂ =
1
ߠ

,     0 < ߠ < ∞, 

 
    =  .݁ݎℎ݁ݓ݁ݏ݈݁ 0

 
The p.d.f. of Yn is 
 

݃(ݕ) =
ିଵݕ݊

ߠ ,   0 < ݕ <  ,ߠ

 
=  .݁ݎℎ݁ݓ݁ݏ݈݁ 0

and the distribution function of Yn is 
 

(ݕ)ܨ                                                       = ݕ      ,0 < 0, 
 

                        = න
ିଵݖ݊

ߠ

௬


ݖ݀ = ቀ

ݕ
ߠ

ቁ


,   0 ≤ ݕ <  ,ߠ

 
= ߠ    ,1 ≤ ݕ < ∞.            

 
Then 
 

lim
→ஶ

(ݕ)ܨ = 0,    − ∞ < ݕ <  ,ߠ

 
                    = ߠ          ,1 ≤ ݕ < ∞. 

 
Now 
 

(ݕ)ܨ = 0,    − ∞ < ݕ <  ,ߠ
 

           = ߠ          ,1 ≤ ݕ < ∞. 
 
is a distribution function.  
 
Example 2. Let Xn have the distribution function 
 

(ݔ̅)ܨ = න
1

ටଵ


ߨ2√

௫̅

ିஶ
݁ି௪మ/ଶ݀ݓ. 

 
If the change of the variable ݒ =  is made, we have ݓ݊√
 

(ݔ̅)ܨ = න
1

ߨ2√

√௫̅

ିஶ
݁ି௩మ/ଶ݀ݒ. 



79 
 

 
It is clear that 
 

lim
→ஶ

(ݔ̅)ܨ = ݔ̅      ,0 < 0, 

 

                   =
1
2

ݔ̅      , = 0, 

 
                    = ݔ̅        ,1 > 0. 

 
 
Now the function 
 

(ݔ̅)ܨ = ݔ̅    ,0 < 0, 
 

          = ݔ̅    ,1 ≥ 0, 
 
is a distribution function and lim→ஶ (ݔ̅)ܨ =  at every point of continuity of (ݔ̅)ܨ
F(̅ݔ).  
 
Accordingly the random variable Xn has a limiting distribution with distribution 
function F( (ݔ̅ . Again this limiting distribution is degenerate and has all the 
probability at one point ̅ݔ = 0. 
 
Example 3. The fact that limiting distributions, if they exist cannot general be 
determined by taking the limit of p.d.f. will now illustrated let Xn have the p.d.f. 
 

݂(ݔ) = ݔ    ,1 = 2 +
1
݊

, 

 
          =  .݁ݎℎ݁ݓ݁ݏ݈݁    0

 
Clearly lim→ஶ ݂(ݔ) = 0 all values of x. This may suggest that Xn is 
 

(ݔ)ܨ = ݔ    ,0 < 2 +
1
݊

, 

 

            = ݔ    ,1 ≥ 2 +
1
݊

. 

 
and 
 

lim
→ஶ

(ݔ)ܨ = ݔ    ,0 ≤ 2, 

 
                   = ݔ    ,1 > 2. 
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Since  
 

(ݔ)ܨ = ݔ    ,0 < 2, 
 

          = ݔ    ,1 ≥ 2, 
 
Is a distribution function, and since lim→ஶ (ݔ)ܨ = (ݔ)ܨ  at all points of 
continuity of F(x), there is a limiting distribution of Xn with distribution function 
F(x).  
 
 
 
 
5.2 Stochastic Convergence 
 
Theorem : Let Fn(y) denote the distribution function of a random variable Yn 
whose distribution depends upon the positive integer n. Let c denote a constant 
which does not depend on n. The random variable Yn converges stochastically to 
the constant c if and only if, for ever ∈> 0, the  
 

lim
→ஶ

Pr (| ܻ − ܿ| < ߳) = 1. 

 
Proof. 
 
Let 
 

lim
→ஶ

Pr (| ܻ − ܿ| < ߳) = 1. 

 
for every ∈> 0.  We have to prove that the random variable Yn converges 
stochastically to the constant c. That is we have to prove that  
 

lim
→ஶ

(ݕ)ܨ = ݕ      ,0 < ܿ, 

 
                   = ݕ      ,1 > ܿ. 

 
If the limit of Fn(y) is indicated, then Yn has a limiting distribution with 
distribution function 
 

(ݕ)ܨ = ݕ    ,0 < ܿ, 
 

          = ݕ    ,1 ≥ ܿ. 
 
Now 
 

Pr(| ܻ − ܿ| < ߳) = ܿ)]ܨ + ߳) −] − ܿ)ܨ − ߳), 
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where ܨ[(ܿ + ߳) −] is the left-hand limit of Fn(y) at ݕ = ܿ + ߳. Thus we have 
 

1 = lim
→ஶ

Pr (| ܻ − ܿ| < ߳) = lim
→ஶ

ܿ)]ܨ + ߳) −] − lim
→ஶ

ܿ)ܨ − ߳). 

 
Because 0 ≤ (ݕ)ܨ ≤ 1 for all values of y and for every positive integer n, it must 
be that  
 

lim
→ஶ

ܿ)ܨ − ߳) = 0,     lim
→ஶ

ܿ)]ܨ + ߳) −] = 1.    

 
Since this is true for every ∈> 0, we have 
 

lim
→ஶ

(ݕ)ܨ = ݕ      ,0 < ܿ, 

 
                   = ݕ      ,1 > ܿ. 

Now, we assume that 
 

lim
→ஶ

(ݕ)ܨ = ݕ      ,0 < ܿ, 

 
                   = ݕ      ,1 > ܿ. 

 
We are to prove that lim→ஶ Pr (| ܻ − ܿ| < ߳) = 1,  for every ∈> 0. 
Because 
 

lim
→ஶ

Pr (| ܻ − ܿ| < ߳) = lim
→ஶ

ܿ)]ܨ + ߳) −] − lim
→ஶ

ܿ)ܨ − ߳), 

 
and because it is given that  
 

lim
→ஶ

ܿ)ܨ − ߳) = 0,     lim
→ஶ

ܿ)]ܨ + ߳) −] = 1. 

 
for every ∈> 0,  we have the desired result. This completes the proof of the 
theorem. 
 
That is this last limit is also a necessary and sufficient condition for the stochastic 
convergence of the random variable Yn to the constant c. 
 
Example: Let തܺ denote the meanof a random sample of size n from a distribution 
that has a mean µ and positive variance ߪଶ.Then the mean and variance of തܺ are 

݀݊ܽ ߤ
ఙమ

୬
. Consider for every fixed ∈> 0, the probability  

 

Pr(| തܺ − |ߤ < ߳) = Pr ൬| തܺ − |ߤ ≥
ߪ݇

√݊
൰, 
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Where ݇ = ߪ/݊√߳ . In accordance with the inequality of Chebyshev, this 

probability is less than or equal to 
ଵ

మ = <∋ ଶ/݊߳ଶ. So, for every fixedߪ 0, we 

have 
 

lim
→ஶ

Pr (| തܺ − |ߤ ≥ ߳) =≤ lim
→ஶ

ଶߪ

݊߳ଶ = 0. 

 
Hence Xn converges stochastically to µ if ߪଶ is finite. 
 
5.3 Limiting Moment-Generating Functions 
 
Result: 
 
Let the random variable Ynhave the distribution function Fn(y) and the moment 
generating function M(t;n) that exists for -h < t < h for all n. If there exists a 
distribution F(y), with corresponding moment-generating function M(t), defined 
for |ݐ| ≤ ℎଵ < ℎ,  such that lim→ஶ ;ݐ)ܯ ݊) = ,(ݐ)ܯ  then Yn has a limiting 
distribution with distribution function F(y). 
Example 1. Let Yn have a distribution that b(n,p). Suppose that the mean ߤ =  ݊
is the same for every n; that is  =

ఓ


, where µ is a constant. We shall find the 

limiting distribution of the binomial distribution, when  = ఓ


, by finding the limit 

of M(t;n). Now 
 

;ݐ)ܯ ݊) = (௧݁)ܧ = [(1 − ( + ௧]݁ = ቈ1 +
௧݁)ߤ − 1)

݊




 

 
for all real values of t. Henc we have  
 

lim
→ஶ

;ݐ)ܯ ݊) =  ݁ఓ(ିଵ) 

 
for all real values of t. Since there exists a distribution, namely the poisson 
distribution with mean µ that has this moment generating function ݁ఓ(ିଵ), then 
in accordance with the theorem and under the conditions stated, it is seen that Yn 
has a limiting poisson distribution with mean µ. 
 
Example 2. Let Zn be X

2(n). Then the moment generating function of Zn is (1 −
,/ଶି(ݐ2 ݐ < 1/2. The mean and the variance of Zn are respectively n  and 2n. The 
limiting distribution of the random variable Yn=(Zn – n)/√2݊will be investigated. 
Now the moment generating function of Yn is  
 

;ݐ)ܯ                                                           ݊) = ܧ ൜exp ݐ ൬
ܼ − ݊

√2݊
൰൨ൠ 
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= ݁ି


√మܧ ൬݁
ೋ
√మ൰ 

 

                                                                         = exp − ቌݐඨ
2
݊

ቍ ቀ
݊
2

ቁ ൬1 − 2
ݐ

√2݊
൰

ି/ଶ

,

ݐ <
√2݊

2
. 

 
This may be written in the form 
 

;ݐ)ܯ ݊) = ቌ݁௧ඥଶ ⁄ − ඨݐ
2
݊

݁௧ඥଶ ⁄ ቍ

ି/ଶ

ݐ    , < ට
݊
2

. 

 
In accordance with Taylor’s formula, there exists a number ߝ(݊), between 0 and 

ටଶݐ


, such that 

 

݁௧ඥଶ ⁄ = 1 + ඨݐ 
2
݊

+
1
2

ቌݐඨ
2
݊

ቍ

ଶ

+
݁ఌ()

6
ቌݐඨ

2
݊

ቍ

ଷ

. 

 

If this sum is substituted for ݁௧ඥଶ ⁄  in the last expression for M(t;n), it is seen that 
 

;ݐ)ܯ ݊) = ቆ1 −
ଶݐ

݊
+

߰(݊)

݊
ቇ

ି/ଶ

, 

 
where  
 

߰(݊) =
ଷ݁ఌ()ݐ2√

3√݊
−

ଷݐ2√

√݊
−

ସ݁ఌ()ݐ2

3݊
. 

 
Since ݁ఌ() → ݊ ݏܽ 0 → ∞, then lim ߰(݊) = 0 for every fix value of t. Also  
 

lim
→ஶ

;ݐ)ܯ ݊) = ݁௧మ ଶ⁄  

for all real values of t. That is the random variable Yn=(Zn – n)/√2݊has a limiting 
normal distribution with mean zero and variance 1. 
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5.4 The Central Limit Theorem 

Statement: Let ܺଵ, ܺଶ, … , ܺ  denote the items of random sample from a 
distribution that mean µ and positive variance ߪଶ . Then the random variable 

ܻ =
∑ (ିఓ)

భ

√ఙ
= √݊( തܺ −  has the limiting distribution that is normal with ߪ/(ߤ

mean zero and variance 1. 

Proof. 

We assume the existence of the moment generating function (ݐ)ܯ =
,(௧௫݁)ܧ −ℎ < ݐ < ℎ, of the distribution. 

The function 

(ݐ)݉ = ௧(ିఓ)൧݁ൣܧ = ݁ିఓ௧(ݐ)ܯ 

also exists for -h <t <h. Since, m(y) is the moment generating function X - µ, it 
must follow that ݉(0) = 1, ݉ᇱ(0) = ܺ)ܧ − (ߤ = 0 ܽ݊݀ ݉ᇱᇱ(0) = ܺ)]ܧ −
[ଶ(ߤ =  .ଶߪ

By Taylor’s formula, there exist a number ߝ between 0 and t such that 

(ݐ)݉                 = ݉(0) + ݉ᇱ(0)ݐ +
݉ᇱᇱ(ߝ)ݐଶ

2
 

= 1 +
݉ᇱᇱ(ߝ)ݐଶ

2
. 

 

If 
ఙమ௧మ

ଶ
 is added and subtracted then 

(ݐ)݉ = 1 +
ଶݐଶߪ

2
+

[݉ᇱᇱ(ߝ) − ଶݐ[ଶߪ

2
. 

Next consider M(t;n), wherr 

;ݐ)ܯ ݊) = ܧ ቈexp ቆ
∑ ܺ − ߤ݊

ଵ

ߪ݊√
ቇ 

                               = ܧ exp ൬ݐ
ܺଵ − ߤ

ߪ݊√
൰ exp ൬ݐ

ܺଶ − ߤ

ߪ݊√
൰ … exp ൬ݐ

ܺ − ߤ

ߪ݊√
൰൨ 

           = ܧ exp ൬ݐ
ܺଵ − ߤ

ߪ݊√
൰൨ … ܧ exp ൬ݐ

ܺ − ߤ

ߪ݊√
൰൨ 



85 
 

= ൜ܧ exp ൬ݐ
ܺ − ߤ

ߪ݊√
൰ൠ



 

= ݉ ൬
ݐ

ߪ݊√
൰൨



,   − ℎ <
ݐ

ߪ݊√
< ℎ.  

In m(t) replace t by 
௧

√ఙ
 to obtain 

                                                        ݉ ൬
ݐ

ߪ݊√
൰ = 1 +

ଶݐ

2݊
+

[݉ᇱᇱ(ߝ) − ଶݐ[ଶߪ

ଶߪ2݊ , 

where now ߝ is between 0 and 
௧

√ఙ
 with -h√݊ߪ< t < h√݊ߪ. Accordingly 

;ݐ)ܯ ݊) = ቊ1 +
ଶݐ

2݊
+

[݉ᇱᇱ(ߝ) − ଶݐ[ଶߪ

ଶߪ2݊ ቋ


. 

Since ݉ᇱᇱ(ݐ) is continuous at t = 0 and since ߝ → ݊ ݏܽ 0 → ∞, we have  

lim
→ஶ

[݉ᇱᇱ(ߝ) − [ଶߪ = 0. 

Thus, 

lim
→ஶ

;ݐ)ܯ ݊) = ݁௧మ/ଶ 

for all real values of t. This proves that the random variable ܻ = √݊( തܺ −  ߪ/(ߤ
has a limiting normal distribution with mean zero and variance 1. 

1.5. Some Theorems on limiting distributions 

Result: 

Let Fn(u) denote the distribution function of a random variable Un whose 
distribution depends upon the positive integer n. Let Un converge stochastically to 
the constant ܿ ≠ 0. The random variable Un/c converges stochastically to 1. 

Theorem :Let Fn(u) denote the distribution function of a random variable Un 
whose distribution depends upon the positive integer n. Further, let Un converge 
stochastically to the positive constant and let Pr(Un<0) = 0 for every n. The 

random variable ඥܷ converges stochastically to √ܿ. 

Proof.  

We are given that the lim→ஶ Prหඥܷ − √ܿห ≥ ߝ = 0 for every ߝ > 0. We have 

to prove that the  
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lim→ஶ Prหඥܷ − √ܿห ≥ ᇱߝ = 0, for every ߝ′ > 0. Now the probability 

lim
→ஶ

Prหඥܷ − √ܿห ≥ ߝ = Pr[ห൫ඥܷ − √ܿ൯൫ඥܷ + √ܿ൯ ≥  [หߝ

                                        = Pr ቆหඥܷ − √ܿห ≥
ߝ

൫ඥܷ + √ܿ൯
ቇ 

                            ≥ Pr (หඥܷ − √ܿห ≥
ߝ

√ܿ
≥ 0. 

If we let ߝᇱ = ఌ

√
, and if we take the limit as n becomes infinite, we have  

0 = lim
→ஶ

Pr(|ܷ − ܿ| ≥ (ߝ ≥ lim
→ஶ

Prหඥܷ − √ܿห ≥ ᇱߝ = 0 

for every ߝ′ > 0. This completes the proof. 

Exercise 

1. Show that  

ܵଶ =
1
݊

( ܺ − ܺ)ଶ



ଵ

=
1
݊

 ܺ
ଶ − ܺଶ,



ଵ

 

            Where  ܺ = ∑ 



ଵ . 

2. Find the probability that exactly four items of a random sample of size 5 from the 
distribution having p.d.f. f(x) = (x+1)/2, -1<x<1, zero elsewhere exceed zero. 

3. Let X1,X2 be a random sample from the distribution having p.d.f. f(x) = 2x, 

0<x<1, zero elsewhere. Find Pr ቀ
భ

మ
≤

ଵ

ଶ
ቁ. 

4. If the sample size is n = 2, find the constant c so that s2 = c(X1 – X2)
2. 

5. Let X have a p.d.f. f(x) = (1/3)x, x = 1,2,3, zero elsewhere. Find the p.d.f. of Y = 
2X + 1. 

6. Let X have a p.d.f. f(x) = (1/3)x, x = 1,2,3, zero elsewhere. Find the p.d.f. of Y = 
X3. 

7. If the p.d.f. of X is ݂(ݔ) = ௫మି݁ݔ2
, 0 < ݔ < ∞, zero elsewhere determine the 

p.d.f. of ܻ = ܺଶ. 
8. Let the stochastically independent random variables X1 and X2 have the 

p.d.f.݂(ݔ) =
ଵ


, ݔ = 1,2,3,4,5,6,  .Find the p.d.f. of Y = X1 + X2 .݁ݎℎ݁ݓ݁ݏ݈݁ ݎ݁ݖ

Note under the appropriate assumptions 11 that Y may be interpreted as the sum 
of the spots that appear when two dice are cast. 
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9. Let Xn denote the mean of a random sample if size n from distribution that is 
,ߤ)݊  .ଶ). Find the limiting the distribution of Xnߪ

10. Let X be X2(50). Appropriate Pr (40 < ܺ < 60). 
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